Local ionic transport enables selective PGM-free bipolar membrane electrode assembly
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-52409-z
Download full text from publisher
References listed on IDEAS
- Ke Xie & Rui Kai Miao & Adnan Ozden & Shijie Liu & Zhu Chen & Cao-Thang Dinh & Jianan Erick Huang & Qiucheng Xu & Christine M. Gabardo & Geonhui Lee & Jonathan P. Edwards & Colin P. O’Brien & Shannon , 2022. "Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Wen Ju & Alexander Bagger & Guang-Ping Hao & Ana Sofia Varela & Ilya Sinev & Volodymyr Bon & Beatriz Roldan Cuenya & Stefan Kaskel & Jan Rossmeisl & Peter Strasser, 2017. "Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
- Joshua A. Rabinowitz & Matthew W. Kanan, 2020. "The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
- Guobin Wen & Bohua Ren & Xin Wang & Dan Luo & Haozhen Dou & Yun Zheng & Rui Gao & Jeff Gostick & Aiping Yu & Zhongwei Chen, 2022. "Continuous CO2 electrolysis using a CO2 exsolution-induced flow cell," Nature Energy, Nature, vol. 7(10), pages 978-988, October.
- Danielle A. Salvatore & Christine M. Gabardo & Angelica Reyes & Colin P. O’Brien & Steven Holdcroft & Peter Pintauro & Bamdad Bahar & Michael Hickner & Chulsung Bae & David Sinton & Edward H. Sargent , 2021. "Designing anion exchange membranes for CO2 electrolysers," Nature Energy, Nature, vol. 6(4), pages 339-348, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cornelius A. Obasanjo & Guorui Gao & Jackson Crane & Viktoria Golovanova & F. Pelayo García de Arquer & Cao-Thang Dinh, 2023. "High-rate and selective conversion of CO2 from aqueous solutions to hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Xiaojie She & Lingling Zhai & Yifei Wang & Pei Xiong & Molly Meng-Jung Li & Tai-Sing Wu & Man Chung Wong & Xuyun Guo & Zhihang Xu & Huaming Li & Hui Xu & Ye Zhu & Shik Chi Edman Tsang & Shu Ping Lau, 2024. "Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A," Nature Energy, Nature, vol. 9(1), pages 81-91, January.
- Shoujie Li & Xiao Dong & Gangfeng Wu & Yanfang Song & Jianing Mao & Aohui Chen & Chang Zhu & Guihua Li & Yiheng Wei & Xiaohu Liu & Jiangjiang Wang & Wei Chen & Wei Wei, 2024. "Ampere-level CO2 electroreduction with single-pass conversion exceeding 85% in acid over silver penetration electrodes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Yurou Celine Xiao & Siyu Sonia Sun & Yong Zhao & Rui Kai Miao & Mengyang Fan & Geonhui Lee & Yuanjun Chen & Christine M. Gabardo & Yan Yu & Chenyue Qiu & Zunmin Guo & Xinyue Wang & Panagiotis Papangel, 2024. "Reactive capture of CO2 via amino acid," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Shashwati C. Cunha & Joaquin Resasco, 2023. "Maximizing single-pass conversion does not result in practical readiness for CO2 reduction electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
- Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Jie Yin & Jing Jin & Zhouyang Yin & Liu Zhu & Xin Du & Yong Peng & Pinxian Xi & Chun-Hua Yan & Shouheng Sun, 2023. "The built-in electric field across FeN/Fe3N interface for efficient electrochemical reduction of CO2 to CO," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Charles E. Creissen & Marc Fontecave, 2022. "Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
- Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Chase L. Radford & Torben Saatkamp & Andrew J. Bennet & Steven Holdcroft, 2024. "An organic proton cage that is ultra-resistant to hydroxide-promoted degradation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
- Hai-Gang Qin & Yun-Fan Du & Yi-Yang Bai & Fu-Zhi Li & Xian Yue & Hao Wang & Jian-Zhao Peng & Jun Gu, 2023. "Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Xueping Qin & Heine A. Hansen & Karoliina Honkala & Marko M. Melander, 2023. "Cation-induced changes in the inner- and outer-sphere mechanisms of electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Bin Liu & Tuo Wang & Shujie Wang & Gong Zhang & Dazhong Zhong & Tenghui Yuan & Hao Dong & Bo Wu & Jinlong Gong, 2022. "Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
- Haifeng Shen & Huanyu Jin & Haobo Li & Herui Wang & Jingjing Duan & Yan Jiao & Shi-Zhang Qiao, 2023. "Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Agnes E. Thorarinsdottir & Samuel S. Veroneau & Daniel G. Nocera, 2022. "Self-healing oxygen evolution catalysts," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Gumaa A. El-Nagar & Flora Haun & Siddharth Gupta & Sasho Stojkovikj & Matthew T. Mayer, 2023. "Unintended cation crossover influences CO2 reduction selectivity in Cu-based zero-gap electrolysers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52409-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.