IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34563-4.html
   My bibliography  Save this article

Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates

Author

Listed:
  • Xiao Sun

    (University of Science and Technology of China)

  • Xuanye Chen

    (University of Science and Technology of China)

  • Cong Fu

    (University of Science and Technology of China)

  • Qingbo Yu

    (Anhui University of Science and Technology)

  • Xu-Sheng Zheng

    (University of Science and Technology of China)

  • Fei Fang

    (University of Science and Technology of China)

  • Yuanxu Liu

    (Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine)

  • Junfa Zhu

    (University of Science and Technology of China)

  • Wenhua Zhang

    (University of Science and Technology of China)

  • Weixin Huang

    (University of Science and Technology of China
    Chinese Academy of Sciences)

Abstract

H2O2 is widely used as an oxidant for photocatalytic methane conversion to value-added chemicals over oxide-based photocatalysts under mild conditions, but suffers from low utilization efficiencies. Herein, we report that O2 is an efficient molecular additive to enhance the utilization efficiency of H2O2 by suppressing H2O2 adsorption on oxides and consequent photogenerated holes-mediated H2O2 dissociation into O2. In photocatalytic methane conversion over an anatase TiO2 nanocrystals predominantly enclosed by the {001} facets (denoted as TiO2{001})-C3N4 composite photocatalyst at room temperature and ambient pressure, O2 additive significantly enhances the utilization efficiency of H2O2 up to 93.3%, giving formic acid and liquid-phase oxygenates selectivities respectively of 69.8% and 97% and a formic acid yield of 486 μmolHCOOH·gcatalyst−1·h−1. Efficient charge separation within TiO2{001}-C3N4 heterojunctions, photogenerated holes-mediated activation of CH4 into ·CH3 radicals on TiO2{001} and photogenerated electrons-mediated activation of H2O2 into ·OOH radicals on C3N4, and preferential dissociative adsorption of methanol on TiO2{001} are responsible for the active and selective photocatalytic conversion of methane to formic acid over TiO2{001}-C3N4 composite photocatalyst.

Suggested Citation

  • Xiao Sun & Xuanye Chen & Cong Fu & Qingbo Yu & Xu-Sheng Zheng & Fei Fang & Yuanxu Liu & Junfa Zhu & Wenhua Zhang & Weixin Huang, 2022. "Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34563-4
    DOI: 10.1038/s41467-022-34563-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34563-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34563-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingying Fan & Wencai Zhou & Xueying Qiu & Hongdong Li & Yuheng Jiang & Zhonghui Sun & Dongxue Han & Li Niu & Zhiyong Tang, 2021. "Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate," Nature Sustainability, Nature, vol. 4(6), pages 509-515, June.
    2. Junjun Shan & Mengwei Li & Lawrence F. Allard & Sungsik Lee & Maria Flytzani-Stephanopoulos, 2017. "Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts," Nature, Nature, vol. 551(7682), pages 605-608, November.
    3. Shuxing Bai & Fangfang Liu & Bolong Huang & Fan Li & Haiping Lin & Tong Wu & Mingzi Sun & Jianbo Wu & Qi Shao & Yong Xu & Xiaoqing Huang, 2020. "High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Yu Tang & Yuting Li & Victor Fung & De-en Jiang & Weixin Huang & Shiran Zhang & Yasuhiro Iwasawa & Tomohiro Sakata & Luan Nguyen & Xiaoyan Zhang & Anatoly I. Frenkel & Franklin (Feng) Tao, 2018. "Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    5. Yuanyi Zhou & Ling Zhang & Wenzhong Wang, 2019. "Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Xiyi Li & Chao Wang & Jianlong Yang & Youxun Xu & Yi Yang & Jiaguo Yu & Juan J. Delgado & Natalia Martsinovich & Xiao Sun & Xu-Sheng Zheng & Weixin Huang & Junwang Tang, 2023. "PdCu nanoalloy decorated photocatalysts for efficient and selective oxidative coupling of methane in flow reactors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Xiangcheng Zhang & Silian Cheng & Chao Chen & Xue Wen & Jie Miao & Baoxue Zhou & Mingce Long & Lizhi Zhang, 2024. "Keto-anthraquinone covalent organic framework for H2O2 photosynthesis with oxygen and alkaline water," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Jiwon Kim & Jae Hyung Kim & Cheoulwoo Oh & Hyewon Yun & Eunchong Lee & Hyung-Suk Oh & Jong Hyeok Park & Yun Jeong Hwang, 2023. "Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Bin Li & Jiali Mu & Guifa Long & Xiangen Song & Ende Huang & Siyue Liu & Yao Wei & Fanfei Sun & Siquan Feng & Qiao Yuan & Yutong Cai & Jian Song & Wenrui Dong & Weiqing Zhang & Xueming Yang & Li Yan &, 2024. "Water-participated mild oxidation of ethane to acetaldehyde," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Lei Luo & Lei Fu & Huifen Liu & Youxun Xu & Jialiang Xing & Chun-Ran Chang & Dong-Yuan Yang & Junwang Tang, 2022. "Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Wenqing Zhang & Dawei Xi & Yihong Chen & Aobo Chen & Yawen Jiang & Hengjie Liu & Zeyu Zhou & Hui Zhang & Zhi Liu & Ran Long & Yujie Xiong, 2023. "Light-driven flow synthesis of acetic acid from methane with chemical looping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Luning Chen & Pragya Verma & Kaipeng Hou & Zhiyuan Qi & Shuchen Zhang & Yi-Sheng Liu & Jinghua Guo & Vitalie Stavila & Mark D. Allendorf & Lansun Zheng & Miquel Salmeron & David Prendergast & Gabor A., 2022. "Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Mohamedali, Mohanned & Ayodele, Olumide & Ibrahim, Hussameldin, 2020. "Challenges and prospects for the photocatalytic liquefaction of methane into oxygenated hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Jun Ma & Can Zhu & Keke Mao & Wenbin Jiang & Jingxiang Low & Delong Duan & Huanxin Ju & Dong Liu & Kun Wang & Yijing Zang & Shuangming Chen & Hui Zhang & Zeming Qi & Ran Long & Zhi Liu & Li Song & Yuj, 2023. "Sustainable methane utilization technology via photocatalytic halogenation with alkali halides," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Xiao-Li Xu & Nian-Nian Wang & Yong-Hao Zou & Xiao Qin & Peng Wang & Xiang-Yu Lu & Xiao-Yu Zhang & Wei-Yin Sun & Yi Lu, 2024. "N, N’-bidentate ligand anchored palladium catalysts on MOFs for efficient Heck reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Chongyang Tang & Cong Wei & Yanyan Fang & Bo Liu & Xianyin Song & Zenan Bian & Xuanwei Yin & Hongbo Wang & Zhaohui Liu & Gongming Wang & Xiangheng Xiao & Xiangfeng Duan, 2024. "Electrocatalytic hydrogenation of acetonitrile to ethylamine in acid," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Lei Zhang & Run-Han Li & Xiao-Xin Li & Shengyao Wang & Jiang Liu & Xiao-Xuan Hong & Long-Zhang Dong & Shun-Li Li & Ya-Qian Lan, 2024. "Photocatalytic aerobic oxidation of C(sp3)-H bonds," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Philipp Keller & Michael A. Reiter & Patrick Kiefer & Thomas Gassler & Lucas Hemmerle & Philipp Christen & Elad Noor & Julia A. Vorholt, 2022. "Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Yueshan Xu & Daoxiong Wu & Qinghua Zhang & Peng Rao & Peilin Deng & Mangen Tang & Jing Li & Yingjie Hua & Chongtai Wang & Shengkui Zhong & Chunman Jia & Zhongxin Liu & Yijun Shen & Lin Gu & Xinlong Ti, 2024. "Regulating Au coverage for the direct oxidation of methane to methanol," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Ashwani Kumar & Viet Q. Bui & Jinsun Lee & Lingling Wang & Amol R. Jadhav & Xinghui Liu & Xiaodong Shao & Yang Liu & Jianmin Yu & Yosep Hwang & Huong T. D. Bui & Sara Ajmal & Min Gyu Kim & Seong-Gon K, 2021. "Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    15. Jinling Wang & Xingchao Dai & Hualin Wang & Honglai Liu & Jabor Rabeah & Angelika Brückner & Feng Shi & Ming Gong & Xuejing Yang, 2021. "Dihydroxyacetone valorization with high atom efficiency via controlling radical oxidation pathways over natural mineral-inspired catalyst," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    16. Qing Hong & Hong Yang & Yanfeng Fang & Wang Li & Caixia Zhu & Zhuang Wang & Sicheng Liang & Xuwen Cao & Zhixin Zhou & Yanfei Shen & Songqin Liu & Yuanjian Zhang, 2023. "Adaptable graphitic C6N6-based copper single-atom catalyst for intelligent biosensing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Yingying Fan & Yuheng Jiang & Haiting Lin & Jianan Li & Yuanjiang Xie & Anyi Chen & Siyang Li & Dongxue Han & Li Niu & Zhiyong Tang, 2024. "Insight into selectivity of photocatalytic methane oxidation to formaldehyde on tungsten trioxide," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Xinxuan Duan & Qihao Sha & Pengsong Li & Tianshui Li & Guotao Yang & Wei Liu & Ende Yu & Daojin Zhou & Jinjie Fang & Wenxing Chen & Yizhen Chen & Lirong Zheng & Jiangwen Liao & Zeyu Wang & Yaping Li &, 2024. "Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Youxun Xu & Chao Wang & Xiyi Li & Lunqiao Xiong & Tianyu Zhang & Liquan Zhang & Qinghua Zhang & Lin Gu & Yang Lan & Junwang Tang, 2024. "Efficient methane oxidation to formaldehyde via photon–phonon cascade catalysis," Nature Sustainability, Nature, vol. 7(9), pages 1171-1181, September.
    20. Minjie Zhao & Chengeng Li & Daviel Gómez & Francisco Gonell & Vlad Martin Diaconescu & Laura Simonelli & Miguel Lopez Haro & Jose Juan Calvino & Debora Motta Meira & Patricia Concepción & Avelino Corm, 2023. "Low-temperature hydroformylation of ethylene by phosphorous stabilized Rh sites in a one-pot synthesized Rh-(O)-P-MFI zeolite," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34563-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.