IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36977-0.html
   My bibliography  Save this article

Sustainable methane utilization technology via photocatalytic halogenation with alkali halides

Author

Listed:
  • Jun Ma

    (University of Science and Technology of China
    University of Science and Technology of China
    Institute of Energy, Hefei Comprehensive National Science Center)

  • Can Zhu

    (Fudan University)

  • Keke Mao

    (Anhui University of Technology)

  • Wenbin Jiang

    (University of Science and Technology of China)

  • Jingxiang Low

    (University of Science and Technology of China)

  • Delong Duan

    (University of Science and Technology of China)

  • Huanxin Ju

    (PHI China Analytical Laboratory, CoreTech Integrated Limited)

  • Dong Liu

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Kun Wang

    (Fudan University)

  • Yijing Zang

    (ShanghaiTech University
    Chinese Academy of Sciences)

  • Shuangming Chen

    (University of Science and Technology of China)

  • Hui Zhang

    (Chinese Academy of Sciences)

  • Zeming Qi

    (University of Science and Technology of China)

  • Ran Long

    (University of Science and Technology of China)

  • Zhi Liu

    (ShanghaiTech University
    Chinese Academy of Sciences)

  • Li Song

    (University of Science and Technology of China)

  • Yujie Xiong

    (University of Science and Technology of China
    Institute of Energy, Hefei Comprehensive National Science Center
    Anhui Normal University)

Abstract

Methyl halides are versatile platform molecules, which have been widely adopted as precursors for producing value-added chemicals and fuels. Despite their high importance, the green and economical synthesis of the methyl halides remains challenging. Here we demonstrate sustainable and efficient photocatalytic methane halogenation for methyl halide production over copper-doped titania using alkali halides as a widely available and noncorrosive halogenation agent. This approach affords a methyl halide production rate of up to 0.61 mmol h−1 m−2 for chloromethane or 1.08 mmol h−1 m−2 for bromomethane with a stability of 28 h, which are further proven transformable to methanol and pharmaceutical intermediates. Furthermore, we demonstrate that such a reaction can also operate solely using seawater and methane as resources, showing its high practicability as general technology for offshore methane exploitation. This work opens an avenue for the sustainable utilization of methane from various resources and toward designated applications.

Suggested Citation

  • Jun Ma & Can Zhu & Keke Mao & Wenbin Jiang & Jingxiang Low & Delong Duan & Huanxin Ju & Dong Liu & Kun Wang & Yijing Zang & Shuangming Chen & Hui Zhang & Zeming Qi & Ran Long & Zhi Liu & Li Song & Yuj, 2023. "Sustainable methane utilization technology via photocatalytic halogenation with alkali halides," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36977-0
    DOI: 10.1038/s41467-023-36977-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36977-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36977-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Franklin Feng Tao & Jun-jun Shan & Luan Nguyen & Ziyun Wang & Shiran Zhang & Li Zhang & Zili Wu & Weixin Huang & Shibi Zeng & P. Hu, 2015. "Understanding complete oxidation of methane on spinel oxides at a molecular level," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    2. Yingying Fan & Wencai Zhou & Xueying Qiu & Hongdong Li & Yuheng Jiang & Zhonghui Sun & Dongxue Han & Li Niu & Zhiyong Tang, 2021. "Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate," Nature Sustainability, Nature, vol. 4(6), pages 509-515, June.
    3. Lei Luo & Lei Fu & Huifen Liu & Youxun Xu & Jialiang Xing & Chun-Ran Chang & Dong-Yuan Yang & Junwang Tang, 2022. "Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Xuxing Chen & Yunpeng Li & Xiaoyang Pan & David Cortie & Xintang Huang & Zhiguo Yi, 2016. "Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueying Wan & Yifan Li & Yihong Chen & Jun Ma & Ying-Ao Liu & En-Dian Zhao & Yadi Gu & Yilin Zhao & Yi Cui & Rongtan Li & Dong Liu & Ran Long & Kim Meow Liew & Yujie Xiong, 2024. "A nonmetallic plasmonic catalyst for photothermal CO2 flow conversion with high activity, selectivity and durability," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingying Fan & Yuheng Jiang & Haiting Lin & Jianan Li & Yuanjiang Xie & Anyi Chen & Siyang Li & Dongxue Han & Li Niu & Zhiyong Tang, 2024. "Insight into selectivity of photocatalytic methane oxidation to formaldehyde on tungsten trioxide," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Youxun Xu & Chao Wang & Xiyi Li & Lunqiao Xiong & Tianyu Zhang & Liquan Zhang & Qinghua Zhang & Lin Gu & Yang Lan & Junwang Tang, 2024. "Efficient methane oxidation to formaldehyde via photon–phonon cascade catalysis," Nature Sustainability, Nature, vol. 7(9), pages 1171-1181, September.
    3. Jiwon Kim & Jae Hyung Kim & Cheoulwoo Oh & Hyewon Yun & Eunchong Lee & Hyung-Suk Oh & Jong Hyeok Park & Yun Jeong Hwang, 2023. "Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Xiyi Li & Chao Li & Youxun Xu & Qiong Liu & Mounib Bahri & Liquan Zhang & Nigel D. Browning & Alexander J. Cowan & Junwang Tang, 2023. "Efficient hole abstraction for highly selective oxidative coupling of methane by Au-sputtered TiO2 photocatalysts," Nature Energy, Nature, vol. 8(9), pages 1013-1022, September.
    5. Wenqing Zhang & Cenfeng Fu & Jingxiang Low & Delong Duan & Jun Ma & Wenbin Jiang & Yihong Chen & Hengjie Liu & Zeming Qi & Ran Long & Yingfang Yao & Xiaobao Li & Hui Zhang & Zhi Liu & Jinlong Yang & Z, 2022. "High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Chengyang Feng & Shouwei Zuo & Miao Hu & Yuanfu Ren & Liwei Xia & Jun Luo & Chen Zou & Sibo Wang & Yihan Zhu & Magnus Rueping & Yu Han & Huabin Zhang, 2024. "Optimizing the reaction pathway of methane photo-oxidation over single copper sites," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Lei Luo & Xiaoyu Han & Keran Wang & Youxun Xu & Lunqiao Xiong & Jiani Ma & Zhengxiao Guo & Junwang Tang, 2023. "Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Wenqing Zhang & Dawei Xi & Yihong Chen & Aobo Chen & Yawen Jiang & Hengjie Liu & Zeyu Zhou & Hui Zhang & Zhi Liu & Ran Long & Yujie Xiong, 2023. "Light-driven flow synthesis of acetic acid from methane with chemical looping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Haiyan Wang & Shuang Wang & Shida Liu & Yiling Dai & Zhenghao Jia & Xuejing Li & Shuhe Liu & Feixiong Dang & Kevin J. Smith & Xiaowa Nie & Shuandi Hou & Xinwen Guo, 2024. "Redox-induced controllable engineering of MnO2-MnxCo3-xO4 interface to boost catalytic oxidation of ethane," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Mohamedali, Mohanned & Ayodele, Olumide & Ibrahim, Hussameldin, 2020. "Challenges and prospects for the photocatalytic liquefaction of methane into oxygenated hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. He, Li & Fan, Yilin & Bellettre, Jérôme & Yue, Jun & Luo, Lingai, 2020. "A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Manav Chauhan & Bharti Rana & Poorvi Gupta & Rahul Kalita & Chhaya Thadhani & Kuntal Manna, 2024. "Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Lei Luo & Lei Fu & Huifen Liu & Youxun Xu & Jialiang Xing & Chun-Ran Chang & Dong-Yuan Yang & Junwang Tang, 2022. "Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Pu Wang & Xingyu Zhang & Run Shi & Jiaqi Zhao & Geoffrey I. N. Waterhouse & Junwang Tang & Tierui Zhang, 2024. "Photocatalytic ethylene production by oxidative dehydrogenation of ethane with dioxygen on ZnO-supported PdZn intermetallic nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Lei Zhang & Run-Han Li & Xiao-Xin Li & Shengyao Wang & Jiang Liu & Xiao-Xuan Hong & Long-Zhang Dong & Shun-Li Li & Ya-Qian Lan, 2024. "Photocatalytic aerobic oxidation of C(sp3)-H bonds," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Kulandaivalu, Tharani & Mohamed, Abdul Rahman & Ali, Khozema Ahmed & Mohammadi, Maedeh, 2020. "Photocatalytic carbon dioxide reforming of methane as an alternative approach for solar fuel production-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Fei He & Seunghyun Weon & Woojung Jeon & Myoung Won Chung & Wonyong Choi, 2021. "Self-wetting triphase photocatalysis for effective and selective removal of hydrophilic volatile organic compounds in air," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    20. Ziyu Chen & Yutao Ye & Xiaoyi Feng & Yan Wang & Xiaowei Han & Yu Zhu & Shiqun Wu & Senyao Wang & Wenda Yang & Lingzhi Wang & Jinlong Zhang, 2023. "High-density frustrated Lewis pairs based on Lamellar Nb2O5 for photocatalytic non-oxidative methane coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36977-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.