IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53483-z.html
   My bibliography  Save this article

Optimizing the reaction pathway of methane photo-oxidation over single copper sites

Author

Listed:
  • Chengyang Feng

    (King Abdullah University of Science and Technology
    King Abdullah University of Science and Technology (KAUST))

  • Shouwei Zuo

    (King Abdullah University of Science and Technology
    King Abdullah University of Science and Technology (KAUST))

  • Miao Hu

    (King Abdullah University of Science and Technology
    King Abdullah University of Science and Technology (KAUST))

  • Yuanfu Ren

    (King Abdullah University of Science and Technology
    King Abdullah University of Science and Technology (KAUST))

  • Liwei Xia

    (Zhejiang University of Technology)

  • Jun Luo

    (Guangxi University)

  • Chen Zou

    (King Abdullah University of Science and Technology
    King Abdullah University of Science and Technology (KAUST))

  • Sibo Wang

    (Fuzhou University)

  • Yihan Zhu

    (Zhejiang University of Technology)

  • Magnus Rueping

    (King Abdullah University of Science and Technology (KAUST))

  • Yu Han

    (South China University of Technology)

  • Huabin Zhang

    (King Abdullah University of Science and Technology
    King Abdullah University of Science and Technology (KAUST))

Abstract

Direct photocatalytic conversion of methane to value-added C1 oxygenate with O2 is of great interest but presents a significant challenge in achieving highly selective product formation. Herein, a general strategy for the construction of copper single-atom catalysts with a well-defined coordination microenvironment is developed on the basis of metal-organic framework for selective photo-oxidation of CH4 to HCHO. We propose the directional activation of O2 on the mono-copper site breaks the original equilibrium and tilts the balance of radical formation almost completely toward •OOH. The synchronously generated •OOH and •CH3 radicals rapidly combine to form HCHO while inhibiting competing reactions, thus resulting in ultra-highly selective HCHO production (nearly 100%) with a time yield of 2.75 mmol gcat−1 h−1. This work highlights the potential of rationally designing reaction sites to manipulate reaction pathways and achieve selective CH4 photo-oxidation, and could guide the further design of high-performance single-atom catalysts to meet future demand.

Suggested Citation

  • Chengyang Feng & Shouwei Zuo & Miao Hu & Yuanfu Ren & Liwei Xia & Jun Luo & Chen Zou & Sibo Wang & Yihan Zhu & Magnus Rueping & Yu Han & Huabin Zhang, 2024. "Optimizing the reaction pathway of methane photo-oxidation over single copper sites," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53483-z
    DOI: 10.1038/s41467-024-53483-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53483-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53483-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laihao Luo & Jie Luo & Hongliang Li & Fangning Ren & Yifei Zhang & Andong Liu & Wei-Xue Li & Jie Zeng, 2021. "Water enables mild oxidation of methane to methanol on gold single-atom catalysts," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Yingying Fan & Wencai Zhou & Xueying Qiu & Hongdong Li & Yuheng Jiang & Zhonghui Sun & Dongxue Han & Li Niu & Zhiyong Tang, 2021. "Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate," Nature Sustainability, Nature, vol. 4(6), pages 509-515, June.
    3. Paolo Cleto Bruzzese & Enrico Salvadori & Stefan Jäger & Martin Hartmann & Bartolomeo Civalleri & Andreas Pöppl & Mario Chiesa, 2021. "17O-EPR determination of the structure and dynamics of copper single-metal sites in zeolites," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Lei Luo & Xiaoyu Han & Keran Wang & Youxun Xu & Lunqiao Xiong & Jiani Ma & Zhengxiao Guo & Junwang Tang, 2023. "Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Shuxing Bai & Fangfang Liu & Bolong Huang & Fan Li & Haiping Lin & Tong Wu & Mingzi Sun & Jianbo Wu & Qi Shao & Yong Xu & Xiaoqing Huang, 2020. "High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Lei Luo & Lei Fu & Huifen Liu & Youxun Xu & Jialiang Xing & Chun-Ran Chang & Dong-Yuan Yang & Junwang Tang, 2022. "Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Juncai Dong & Yangyang Liu & Jiajing Pei & Haijing Li & Shufang Ji & Lei Shi & Yaning Zhang & Can Li & Cheng Tang & Jiangwen Liao & Shiqing Xu & Huabin Zhang & Qi Li & Shenlong Zhao, 2023. "Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Ningdong Feng & Huiwen Lin & Hui Song & Longxiao Yang & Daiming Tang & Feng Deng & Jinhua Ye, 2021. "Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiwon Kim & Jae Hyung Kim & Cheoulwoo Oh & Hyewon Yun & Eunchong Lee & Hyung-Suk Oh & Jong Hyeok Park & Yun Jeong Hwang, 2023. "Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yingying Fan & Yuheng Jiang & Haiting Lin & Jianan Li & Yuanjiang Xie & Anyi Chen & Siyang Li & Dongxue Han & Li Niu & Zhiyong Tang, 2024. "Insight into selectivity of photocatalytic methane oxidation to formaldehyde on tungsten trioxide," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Youxun Xu & Chao Wang & Xiyi Li & Lunqiao Xiong & Tianyu Zhang & Liquan Zhang & Qinghua Zhang & Lin Gu & Yang Lan & Junwang Tang, 2024. "Efficient methane oxidation to formaldehyde via photon–phonon cascade catalysis," Nature Sustainability, Nature, vol. 7(9), pages 1171-1181, September.
    4. Lei Luo & Xiaoyu Han & Keran Wang & Youxun Xu & Lunqiao Xiong & Jiani Ma & Zhengxiao Guo & Junwang Tang, 2023. "Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Jun Ma & Can Zhu & Keke Mao & Wenbin Jiang & Jingxiang Low & Delong Duan & Huanxin Ju & Dong Liu & Kun Wang & Yijing Zang & Shuangming Chen & Hui Zhang & Zeming Qi & Ran Long & Zhi Liu & Li Song & Yuj, 2023. "Sustainable methane utilization technology via photocatalytic halogenation with alkali halides," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Yueshan Xu & Daoxiong Wu & Qinghua Zhang & Peng Rao & Peilin Deng & Mangen Tang & Jing Li & Yingjie Hua & Chongtai Wang & Shengkui Zhong & Chunman Jia & Zhongxin Liu & Yijun Shen & Lin Gu & Xinlong Ti, 2024. "Regulating Au coverage for the direct oxidation of methane to methanol," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Xiao Sun & Xuanye Chen & Cong Fu & Qingbo Yu & Xu-Sheng Zheng & Fei Fang & Yuanxu Liu & Junfa Zhu & Wenhua Zhang & Weixin Huang, 2022. "Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Hongnan Jia & Na Yao & Yiming Jin & Liqing Wu & Juan Zhu & Wei Luo, 2024. "Stabilizing atomic Ru species in conjugated sp2 carbon-linked covalent organic framework for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Huizhen Zhang & Pengfei Sun & Xiaozhen Fei & Xuejiao Wu & Zongyi Huang & Wanfu Zhong & Qiaobin Gong & Yanping Zheng & Qinghong Zhang & Shunji Xie & Gang Fu & Ye Wang, 2024. "Unusual facet and co-catalyst effects in TiO2-based photocatalytic coupling of methane," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Xiao-Li Xu & Nian-Nian Wang & Yong-Hao Zou & Xiao Qin & Peng Wang & Xiang-Yu Lu & Xiao-Yu Zhang & Wei-Yin Sun & Yi Lu, 2024. "N, N’-bidentate ligand anchored palladium catalysts on MOFs for efficient Heck reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Manav Chauhan & Bharti Rana & Poorvi Gupta & Rahul Kalita & Chhaya Thadhani & Kuntal Manna, 2024. "Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Chongyang Tang & Cong Wei & Yanyan Fang & Bo Liu & Xianyin Song & Zenan Bian & Xuanwei Yin & Hongbo Wang & Zhaohui Liu & Gongming Wang & Xiangheng Xiao & Xiangfeng Duan, 2024. "Electrocatalytic hydrogenation of acetonitrile to ethylamine in acid," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Jingyi Yang & Yike Huang & Haifeng Qi & Chaobin Zeng & Qike Jiang & Yitao Cui & Yang Su & Xiaorui Du & Xiaoli Pan & Xiaoyan Liu & Weizhen Li & Botao Qiao & Aiqin Wang & Tao Zhang, 2022. "Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Lei Luo & Lei Fu & Huifen Liu & Youxun Xu & Jialiang Xing & Chun-Ran Chang & Dong-Yuan Yang & Junwang Tang, 2022. "Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Lei Zhang & Run-Han Li & Xiao-Xin Li & Shengyao Wang & Jiang Liu & Xiao-Xuan Hong & Long-Zhang Dong & Shun-Li Li & Ya-Qian Lan, 2024. "Photocatalytic aerobic oxidation of C(sp3)-H bonds," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Peng Rao & Yijie Deng & Wenjun Fan & Junming Luo & Peilin Deng & Jing Li & Yijun Shen & Xinlong Tian, 2022. "Movable type printing method to synthesize high-entropy single-atom catalysts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Yiqing Wu & Wenru Zhao & Sang Hyun Ahn & Yilin Wang & Eric D. Walter & Ying Chen & Miroslaw A. Derewinski & Nancy M. Washton & Kenneth G. Rappé & Yong Wang & Donghai Mei & Suk Bong Hong & Feng Gao, 2023. "Interplay between copper redox and transfer and support acidity and topology in low temperature NH3-SCR," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Zhang, Rui & He, Yuting & Luo, Yuehui & Lou, DanFeng & Zhu, Rui & Zhu, Can & Li, Quanxin, 2023. "Selective preparation of jet fuels from low carbon alcohols and ABE at atmospheric pressure," Energy, Elsevier, vol. 281(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53483-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.