IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44839-6.html
   My bibliography  Save this article

Regulating Au coverage for the direct oxidation of methane to methanol

Author

Listed:
  • Yueshan Xu

    (Hainan University)

  • Daoxiong Wu

    (Hainan University)

  • Qinghua Zhang

    (Institute of Physics, Chinese Academy of Sciences)

  • Peng Rao

    (Hainan University)

  • Peilin Deng

    (Hainan University)

  • Mangen Tang

    (Hainan University)

  • Jing Li

    (Hainan University)

  • Yingjie Hua

    (Hainan Normal University)

  • Chongtai Wang

    (Hainan Normal University)

  • Shengkui Zhong

    (Hainan Tropical Ocean University)

  • Chunman Jia

    (Hainan University)

  • Zhongxin Liu

    (Hainan University)

  • Yijun Shen

    (Hainan University)

  • Lin Gu

    (Institute of Physics, Chinese Academy of Sciences
    Tsinghua University)

  • Xinlong Tian

    (Hainan University)

  • Quanbing Liu

    (Guangdong University of Technology)

Abstract

The direct oxidation of methane to methanol under mild conditions is challenging owing to its inadequate activity and low selectivity. A key objective is improving the selective oxidation of the first carbon-hydrogen bond of methane, while inhibiting the oxidation of the remaining carbon-hydrogen bonds to ensure high yield and selectivity of methanol. Here we design ultrathin PdxAuy nanosheets and revealed a volcano-type relationship between the binding strength of hydroxyl radical on the catalyst surface and catalytic performance using experimental and density functional theory results. Our investigations indicate a trade-off relationship between the reaction-triggering and reaction-conversion steps in the reaction process. The optimized Pd3Au1 nanosheets exhibits a methanol production rate of 147.8 millimoles per gram of Pd per hour, with a selectivity of 98% at 70 °C, representing one of the most efficient catalysts for the direct oxidation of methane to methanol.

Suggested Citation

  • Yueshan Xu & Daoxiong Wu & Qinghua Zhang & Peng Rao & Peilin Deng & Mangen Tang & Jing Li & Yingjie Hua & Chongtai Wang & Shengkui Zhong & Chunman Jia & Zhongxin Liu & Yijun Shen & Lin Gu & Xinlong Ti, 2024. "Regulating Au coverage for the direct oxidation of methane to methanol," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44839-6
    DOI: 10.1038/s41467-024-44839-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44839-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44839-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaojuan Zhu & Qishui Guo & Yafei Sun & Shangjun Chen & Jian-Qiang Wang & Mengmeng Wu & Wenzhao Fu & Yanqiang Tang & Xuezhi Duan & De Chen & Ying Wan, 2019. "Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Shuxing Bai & Fangfang Liu & Bolong Huang & Fan Li & Haiping Lin & Tong Wu & Mingzi Sun & Jianbo Wu & Qi Shao & Yong Xu & Xiaoqing Huang, 2020. "High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Mingchuan Luo & Zhonglong Zhao & Yelong Zhang & Yingjun Sun & Yi Xing & Fan Lv & Yong Yang & Xu Zhang & Sooyeon Hwang & Yingnan Qin & Jing-Yuan Ma & Fei Lin & Dong Su & Gang Lu & Shaojun Guo, 2019. "PdMo bimetallene for oxygen reduction catalysis," Nature, Nature, vol. 574(7776), pages 81-85, October.
    4. Laihao Luo & Jie Luo & Hongliang Li & Fangning Ren & Yifei Zhang & Andong Liu & Wei-Xue Li & Jie Zeng, 2021. "Water enables mild oxidation of methane to methanol on gold single-atom catalysts," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiwon Kim & Jae Hyung Kim & Cheoulwoo Oh & Hyewon Yun & Eunchong Lee & Hyung-Suk Oh & Jong Hyeok Park & Yun Jeong Hwang, 2023. "Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Lin He & Menggang Li & Longyu Qiu & Shuo Geng & Yequn Liu & Fenyang Tian & Mingchuan Luo & Hu Liu & Yongsheng Yu & Weiwei Yang & Shaojun Guo, 2024. "Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Zhongzhe Wei & Zijiang Zhao & Chenglong Qiu & Songtao Huang & Zihao Yao & Mingxuan Wang & Yi Chen & Yue Lin & Xing Zhong & Xiaonian Li & Jianguo Wang, 2023. "Tripodal Pd metallenes mediated by Nb2C MXenes for boosting alkynes semihydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Xiao-Li Xu & Nian-Nian Wang & Yong-Hao Zou & Xiao Qin & Peng Wang & Xiang-Yu Lu & Xiao-Yu Zhang & Wei-Yin Sun & Yi Lu, 2024. "N, N’-bidentate ligand anchored palladium catalysts on MOFs for efficient Heck reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Zhiqiang Zheng & Lu Qi & Xiaoyu Luan & Shuya Zhao & Yurui Xue & Yuliang Li, 2024. "Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Chongyang Tang & Cong Wei & Yanyan Fang & Bo Liu & Xianyin Song & Zenan Bian & Xuanwei Yin & Hongbo Wang & Zhaohui Liu & Gongming Wang & Xiangheng Xiao & Xiangfeng Duan, 2024. "Electrocatalytic hydrogenation of acetonitrile to ethylamine in acid," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Pu Wang & Xingyu Zhang & Run Shi & Jiaqi Zhao & Geoffrey I. N. Waterhouse & Junwang Tang & Tierui Zhang, 2024. "Photocatalytic ethylene production by oxidative dehydrogenation of ethane with dioxygen on ZnO-supported PdZn intermetallic nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Peng Rao & Yijie Deng & Wenjun Fan & Junming Luo & Peilin Deng & Jing Li & Yijun Shen & Xinlong Tian, 2022. "Movable type printing method to synthesize high-entropy single-atom catalysts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Dongping Xue & Yifang Yuan & Yue Yu & Siran Xu & Yifan Wei & Jiaqi Zhang & Haizhong Guo & Minhua Shao & Jia-Nan Zhang, 2024. "Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Jinfa Chang & Guanzhi Wang & Xiaoxia Chang & Zhenzhong Yang & Han Wang & Boyang Li & Wei Zhang & Libor Kovarik & Yingge Du & Nina Orlovskaya & Bingjun Xu & Guofeng Wang & Yang Yang, 2023. "Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Lu Tao & Kai Wang & Fan Lv & Hongtian Mi & Fangxu Lin & Heng Luo & Hongyu Guo & Qinghua Zhang & Lin Gu & Mingchuan Luo & Shaojun Guo, 2023. "Precise synthetic control of exclusive ligand effect boosts oxygen reduction catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Qichen Wang & Qingguo Feng & Yongpeng Lei & Shuaihao Tang & Liang Xu & Yu Xiong & Guozhao Fang & Yuchao Wang & Peiyao Yang & Jingjing Liu & Wei Liu & Xiang Xiong, 2022. "Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Yang Yang & Xiaojuan Zhu & Lili Wang & Junyu Lang & Guohua Yao & Tian Qin & Zhouhong Ren & Liwei Chen & Xi Liu & Wei Li & Ying Wan, 2022. "Breaking scaling relationships in alkynol semi-hydrogenation by manipulating interstitial atoms in Pd with d-electron gain," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Xiaorui Zhao & Xiaojuan Zhu & Kang Wang & Junqian Lv & Shangjun Chen & Guohua Yao & Junyu Lang & Fei Lv & Yinghui Pu & Ruoou Yang & Bingsen Zhang & Zheng Jiang & Ying Wan, 2022. "Palladium catalyzed radical relay for the oxidative cross-coupling of quinolines," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Wanlin Zhou & Baojie Li & Xinyu Liu & Jingjing Jiang & Shuowen Bo & Chenyu Yang & Qizheng An & Yuhao Zhang & Mikhail A. Soldatov & Huijuan Wang & Shiqiang Wei & Qinghua Liu, 2024. "In situ tuning of platinum 5d valence states for four-electron oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Chen, Zhangsen & Zhang, Gaixia & Chen, Hangrong & Prakash, Jai & Zheng, Yi & Sun, Shuhui, 2022. "Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Yifeng Hou & Fengyan Wang & Chichu Qin & Shining Wu & Mengyang Cao & Pengkun Yang & Lu Huang & Yingpeng Wu, 2022. "A self-healing electrocatalytic system via electrohydrodynamics induced evolution in liquid metal," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44839-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.