IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44839-6.html
   My bibliography  Save this article

Regulating Au coverage for the direct oxidation of methane to methanol

Author

Listed:
  • Yueshan Xu

    (Hainan University)

  • Daoxiong Wu

    (Hainan University)

  • Qinghua Zhang

    (Institute of Physics, Chinese Academy of Sciences)

  • Peng Rao

    (Hainan University)

  • Peilin Deng

    (Hainan University)

  • Mangen Tang

    (Hainan University)

  • Jing Li

    (Hainan University)

  • Yingjie Hua

    (Hainan Normal University)

  • Chongtai Wang

    (Hainan Normal University)

  • Shengkui Zhong

    (Hainan Tropical Ocean University)

  • Chunman Jia

    (Hainan University)

  • Zhongxin Liu

    (Hainan University)

  • Yijun Shen

    (Hainan University)

  • Lin Gu

    (Institute of Physics, Chinese Academy of Sciences
    Tsinghua University)

  • Xinlong Tian

    (Hainan University)

  • Quanbing Liu

    (Guangdong University of Technology)

Abstract

The direct oxidation of methane to methanol under mild conditions is challenging owing to its inadequate activity and low selectivity. A key objective is improving the selective oxidation of the first carbon-hydrogen bond of methane, while inhibiting the oxidation of the remaining carbon-hydrogen bonds to ensure high yield and selectivity of methanol. Here we design ultrathin PdxAuy nanosheets and revealed a volcano-type relationship between the binding strength of hydroxyl radical on the catalyst surface and catalytic performance using experimental and density functional theory results. Our investigations indicate a trade-off relationship between the reaction-triggering and reaction-conversion steps in the reaction process. The optimized Pd3Au1 nanosheets exhibits a methanol production rate of 147.8 millimoles per gram of Pd per hour, with a selectivity of 98% at 70 °C, representing one of the most efficient catalysts for the direct oxidation of methane to methanol.

Suggested Citation

  • Yueshan Xu & Daoxiong Wu & Qinghua Zhang & Peng Rao & Peilin Deng & Mangen Tang & Jing Li & Yingjie Hua & Chongtai Wang & Shengkui Zhong & Chunman Jia & Zhongxin Liu & Yijun Shen & Lin Gu & Xinlong Ti, 2024. "Regulating Au coverage for the direct oxidation of methane to methanol," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44839-6
    DOI: 10.1038/s41467-024-44839-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44839-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44839-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laihao Luo & Jie Luo & Hongliang Li & Fangning Ren & Yifei Zhang & Andong Liu & Wei-Xue Li & Jie Zeng, 2021. "Water enables mild oxidation of methane to methanol on gold single-atom catalysts," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Xiaojuan Zhu & Qishui Guo & Yafei Sun & Shangjun Chen & Jian-Qiang Wang & Mengmeng Wu & Wenzhao Fu & Yanqiang Tang & Xuezhi Duan & De Chen & Ying Wan, 2019. "Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Shuxing Bai & Fangfang Liu & Bolong Huang & Fan Li & Haiping Lin & Tong Wu & Mingzi Sun & Jianbo Wu & Qi Shao & Yong Xu & Xiaoqing Huang, 2020. "High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Mingchuan Luo & Zhonglong Zhao & Yelong Zhang & Yingjun Sun & Yi Xing & Fan Lv & Yong Yang & Xu Zhang & Sooyeon Hwang & Yingnan Qin & Jing-Yuan Ma & Fei Lin & Dong Su & Gang Lu & Shaojun Guo, 2019. "PdMo bimetallene for oxygen reduction catalysis," Nature, Nature, vol. 574(7776), pages 81-85, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiwon Kim & Jae Hyung Kim & Cheoulwoo Oh & Hyewon Yun & Eunchong Lee & Hyung-Suk Oh & Jong Hyeok Park & Yun Jeong Hwang, 2023. "Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Chengyang Feng & Shouwei Zuo & Miao Hu & Yuanfu Ren & Liwei Xia & Jun Luo & Chen Zou & Sibo Wang & Yihan Zhu & Magnus Rueping & Yu Han & Huabin Zhang, 2024. "Optimizing the reaction pathway of methane photo-oxidation over single copper sites," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Lin He & Menggang Li & Longyu Qiu & Shuo Geng & Yequn Liu & Fenyang Tian & Mingchuan Luo & Hu Liu & Yongsheng Yu & Weiwei Yang & Shaojun Guo, 2024. "Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Yifeng Hou & Fengyan Wang & Chichu Qin & Shining Wu & Mengyang Cao & Pengkun Yang & Lu Huang & Yingpeng Wu, 2022. "A self-healing electrocatalytic system via electrohydrodynamics induced evolution in liquid metal," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Qiqi Mao & Xu Mu & Wenxin Wang & Kai Deng & Hongjie Yu & Ziqiang Wang & You Xu & Liang Wang & Hongjing Wang, 2023. "Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Xiaohui Zhang & Zhihu Sun & Rui Jin & Chuwei Zhu & Chuanlin Zhao & Yue Lin & Qiaoqiao Guan & Lina Cao & Hengwei Wang & Shang Li & Hancheng Yu & Xinyu Liu & Leilei Wang & Shiqiang Wei & Wei-Xue Li & Ju, 2023. "Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Zhongzhe Wei & Zijiang Zhao & Chenglong Qiu & Songtao Huang & Zihao Yao & Mingxuan Wang & Yi Chen & Yue Lin & Xing Zhong & Xiaonian Li & Jianguo Wang, 2023. "Tripodal Pd metallenes mediated by Nb2C MXenes for boosting alkynes semihydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Xiao-Li Xu & Nian-Nian Wang & Yong-Hao Zou & Xiao Qin & Peng Wang & Xiang-Yu Lu & Xiao-Yu Zhang & Wei-Yin Sun & Yi Lu, 2024. "N, N’-bidentate ligand anchored palladium catalysts on MOFs for efficient Heck reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Zhiqiang Zheng & Lu Qi & Xiaoyu Luan & Shuya Zhao & Yurui Xue & Yuliang Li, 2024. "Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Chongyang Tang & Cong Wei & Yanyan Fang & Bo Liu & Xianyin Song & Zenan Bian & Xuanwei Yin & Hongbo Wang & Zhaohui Liu & Gongming Wang & Xiangheng Xiao & Xiangfeng Duan, 2024. "Electrocatalytic hydrogenation of acetonitrile to ethylamine in acid," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Jingyi Yang & Yike Huang & Haifeng Qi & Chaobin Zeng & Qike Jiang & Yitao Cui & Yang Su & Xiaorui Du & Xiaoli Pan & Xiaoyan Liu & Weizhen Li & Botao Qiao & Aiqin Wang & Tao Zhang, 2022. "Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Pu Wang & Xingyu Zhang & Run Shi & Jiaqi Zhao & Geoffrey I. N. Waterhouse & Junwang Tang & Tierui Zhang, 2024. "Photocatalytic ethylene production by oxidative dehydrogenation of ethane with dioxygen on ZnO-supported PdZn intermetallic nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Peng Rao & Yijie Deng & Wenjun Fan & Junming Luo & Peilin Deng & Jing Li & Yijun Shen & Xinlong Tian, 2022. "Movable type printing method to synthesize high-entropy single-atom catalysts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Dongping Xue & Yifang Yuan & Yue Yu & Siran Xu & Yifan Wei & Jiaqi Zhang & Haizhong Guo & Minhua Shao & Jia-Nan Zhang, 2024. "Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Zhe Jiang & Xuerui Liu & Xiao-Zhi Liu & Shuang Huang & Ying Liu & Ze-Cheng Yao & Yun Zhang & Qing-Hua Zhang & Lin Gu & Li-Rong Zheng & Li Li & Jianan Zhang & Youjun Fan & Tang Tang & Zhongbin Zhuang &, 2023. "Interfacial assembly of binary atomic metal-Nx sites for high-performance energy devices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Xingkun Wang & Liangliang Xu & Cheng Li & Canhui Zhang & Hanxu Yao & Ren Xu & Peixin Cui & Xusheng Zheng & Meng Gu & Jinwoo Lee & Heqing Jiang & Minghua Huang, 2023. "Developing a class of dual atom materials for multifunctional catalytic reactions," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Jinfa Chang & Guanzhi Wang & Xiaoxia Chang & Zhenzhong Yang & Han Wang & Boyang Li & Wei Zhang & Libor Kovarik & Yingge Du & Nina Orlovskaya & Bingjun Xu & Guofeng Wang & Yang Yang, 2023. "Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44839-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.