IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34522-z.html
   My bibliography  Save this article

Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions

Author

Listed:
  • Yan Zhang

    (Nankai University)

  • Yafei Wang

    (Nankai University)

  • Ying Guan

    (Nankai University)

  • Yongjun Zhang

    (Tiangong University)

Abstract

Natural gels and biomimetic hydrogel materials have been able to achieve outstanding integrated mechanical properties due to the gain of natural biological structures. However, nearly every natural biological structure relies on water as solvents or carriers, which limits the possibility in extreme conditions, such as sub-zero temperatures and long-term application. Here, peptide-enhanced eutectic gels were synthesized by introducing α-helical “molecular spring” structure into deep eutectic solvent. The gel takes full advantage of the α-helical structure, achieving high tensile/compression, good resilience, superior fracture toughness, excellent fatigue resistance and strong adhesion, while it also inherits the benefits of the deep eutectic solvent and solves the problems of solvent volatilization and freezing. This enables unprecedentedly long and stable sensing of human motion or mechanical movement. The electrical signal shows almost no drift even after 10,000 deformations for 29 hours or in the −20 °C to 80 °C temperature range.

Suggested Citation

  • Yan Zhang & Yafei Wang & Ying Guan & Yongjun Zhang, 2022. "Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34522-z
    DOI: 10.1038/s41467-022-34522-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34522-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34522-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeong-Yun Sun & Xuanhe Zhao & Widusha R. K. Illeperuma & Ovijit Chaudhuri & Kyu Hwan Oh & David J. Mooney & Joost J. Vlassak & Zhigang Suo, 2012. "Highly stretchable and tough hydrogels," Nature, Nature, vol. 489(7414), pages 133-136, September.
    2. Bin Xue & Jie Gu & Lan Li & Wenting Yu & Sheng Yin & Meng Qin & Qing Jiang & Wei Wang & Yi Cao, 2021. "Hydrogel tapes for fault-tolerant strong wet adhesion," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaoji Wu & Zhao Liu & Caihong Gong & Wanjiang Li & Sijia Xu & Rui Wen & Wen Feng & Zhiming Qiu & Yurong Yan, 2024. "Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Huang, Mingkun & Long, Kaixiang & Luo, Yuecong & Li, Jingxing & Su, Cuicui & Gao, Xiangming & Guo, Shishang, 2024. "Self-charging power module for multidirectional ultra-low frequency mechanical vibration monitoring and energy harvesting," Applied Energy, Elsevier, vol. 361(C).
    3. Chengkun Zhao & Xing Li & Xiaowen Han & Zhulian Li & Shaoquan Bian & Weinan Zeng & Mingming Ding & Jie Liang & Qing Jiang & Zongke Zhou & Yujiang Fan & Xingdong Zhang & Yong Sun, 2024. "Molecular co-assembled strategy tuning protein conformation for cartilage regeneration," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangyu Bao & Qiman Gao & Massimo Cau & Nabil Ali-Mohamad & Mitchell Strong & Shuaibing Jiang & Zhen Yang & Amin Valiei & Zhenwei Ma & Marco Amabili & Zu-Hua Gao & Luc Mongeau & Christian Kastrup & Ji, 2022. "Liquid-infused microstructured bioadhesives halt non-compressible hemorrhage," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Dongliang Fan & Xi Yuan & Wenyu Wu & Renjie Zhu & Xin Yang & Yuxuan Liao & Yunteng Ma & Chufan Xiao & Cheng Chen & Changyue Liu & Hongqiang Wang & Peiwu Qin, 2022. "Self-shrinking soft demoulding for complex high-aspect-ratio microchannels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Huimin He & Xi Wei & Bin Yang & Hongzhen Liu & Mingze Sun & Yanran Li & Aixin Yan & Chuyang Y. Tang & Yuan Lin & Lizhi Xu, 2022. "Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Zhao Pan & Qi-Qi Fu & Mo-Han Wang & Huai-Ling Gao & Liang Dong & Pu Zhou & Dong-Dong Cheng & Ying Chen & Duo-Hong Zou & Jia-Cai He & Xue Feng & Shu-Hong Yu, 2023. "Designing nanohesives for rapid, universal, and robust hydrogel adhesion," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Aruã Clayton Da Silva & Junzhi Wang & Ivan Rusev Minev, 2022. "Electro-assisted printing of soft hydrogels via controlled electrochemical reactions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Yujie Hua & Kai Wang & Yingying Huo & Yaping Zhuang & Yuhui Wang & Wenzhuo Fang & Yuyan Sun & Guangdong Zhou & Qiang Fu & Wenguo Cui & Kaile Zhang, 2023. "Four-dimensional hydrogel dressing adaptable to the urethral microenvironment for scarless urethral reconstruction," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Zhengyu Xu & Jiajun Lu & Di Lu & Yiran Li & Hai Lei & Bin Chen & Wenfei Li & Bin Xue & Yi Cao & Wei Wang, 2024. "Rapidly damping hydrogels engineered through molecular friction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Le Yao & Chengjiang Lin & Xiaozheng Duan & Xiaoqing Ming & Zhixuan Chen & He Zhu & Shiping Zhu & Qi Zhang, 2023. "Autonomous underwater adhesion driven by water-induced interfacial rearrangement," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Cui, Shuang & Ahn, Chihyung & Wingert, Matthew C. & Leung, David & Cai, Shengqiang & Chen, Renkun, 2016. "Bio-inspired effective and regenerable building cooling using tough hydrogels," Applied Energy, Elsevier, vol. 168(C), pages 332-339.
    12. Yuan Tian & Zhihao Wang & Shuiyan Cao & Dong Liu & Yukun Zhang & Chong Chen & Zhiwen Jiang & Jun Ma & Yunlong Wang, 2024. "Connective tissue inspired elastomer-based hydrogel for artificial skin via radiation-indued penetrating polymerization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Jing Chen & Yiyang Gao & Lei Shi & Wei Yu & Zongjie Sun & Yifan Zhou & Shuang Liu & Heng Mao & Dongyang Zhang & Tongqing Lu & Quan Chen & Demei Yu & Shujiang Ding, 2022. "Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Bo Yi & Tianjie Li & Boguang Yang & Sirong Chen & Jianyang Zhao & Pengchao Zhao & Kunyu Zhang & Yi Wang & Zuankai Wang & Liming Bian, 2024. "Surface hydrophobization of hydrogels via interface dynamics-induced network reconfiguration," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Seola Lee & Pierre J. Walker & Seneca J. Velling & Amylynn Chen & Zane W. Taylor & Cyrus J.B.M Fiori & Vatsa Gandhi & Zhen-Gang Wang & Julia R. Greer, 2024. "Molecular control via dynamic bonding enables material responsiveness in additively manufactured metallo-polyelectrolytes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Xiao Liu & Jingping Wu & Keke Qiao & Guohan Liu & Zhengjin Wang & Tongqing Lu & Zhigang Suo & Jian Hu, 2022. "Topoarchitected polymer networks expand the space of material properties," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Minho Seong & Kahyun Sun & Somi Kim & Hyukjoo Kwon & Sang-Woo Lee & Sarath Chandra Veerla & Dong Kwan Kang & Jaeil Kim & Stalin Kondaveeti & Salah M. Tawfik & Hyung Wook Park & Hoon Eui Jeong, 2024. "Multifunctional Magnetic Muscles for Soft Robotics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Bin Xue & Zoobia Bashir & Yachong Guo & Wenting Yu & Wenxu Sun & Yiran Li & Yiyang Zhang & Meng Qin & Wei Wang & Yi Cao, 2023. "Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Yuanchi Zhang & Cairong Li & Along Guo & Yipei Yang & Yangyi Nie & Jiaxin Liao & Ben Liu & Yanmei Zhou & Long Li & Zhitong Chen & Wei Zhang & Ling Qin & Yuxiao Lai, 2024. "Black phosphorus boosts wet-tissue adhesion of composite patches by enhancing water absorption and mechanical properties," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. S. M. Shatil Shahriar & Alec D. McCarthy & Syed Muntazir Andrabi & Yajuan Su & Navatha Shree Polavoram & Johnson V. John & Mitchell P. Matis & Wuqiang Zhu & Jingwei Xie, 2024. "Mechanically resilient hybrid aerogels containing fibers of dual-scale sizes and knotty networks for tissue regeneration," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34522-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.