IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42209-2.html
   My bibliography  Save this article

Autonomous underwater adhesion driven by water-induced interfacial rearrangement

Author

Listed:
  • Le Yao

    (The Chinese University of Hong Kong, Shenzhen)

  • Chengjiang Lin

    (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences)

  • Xiaozheng Duan

    (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences)

  • Xiaoqing Ming

    (The Chinese University of Hong Kong, Shenzhen)

  • Zhixuan Chen

    (The Chinese University of Hong Kong, Shenzhen)

  • He Zhu

    (The Chinese University of Hong Kong, Shenzhen)

  • Shiping Zhu

    (The Chinese University of Hong Kong, Shenzhen)

  • Qi Zhang

    (The Chinese University of Hong Kong, Shenzhen)

Abstract

Underwater adhesives receive extensive attention due to their wide applications in marine explorations and various related industries. However, current adhesives still suffer from excessive water absorption and lack of spontaneity. Herein, we report an autonomous underwater adhesive based on poly(2-hydroxyethyl methacrylate-co-benzyl methacrylate) amphiphilic polymeric matrix swollen by hydrophobic imidazolium ionic liquid. The as-prepared adhesive is tough and flexible, showing little to none instantaneous underwater adhesion onto the PET substrate, whereas its adhesion energy on the substrate can grow more than 5 times to 458 J·m−2 after 24 hours. More importantly, this process is entirely spontaneous, without any external pressing force. Our comprehensive studies based on experimental characterizations and molecular dynamic simulations confirm that such autonomous adhesion process is driven by water-induced rearrangement of the functional groups. It is believed that such material can provide insights into the development of next-generation smart adhesives.

Suggested Citation

  • Le Yao & Chengjiang Lin & Xiaozheng Duan & Xiaoqing Ming & Zhixuan Chen & He Zhu & Shiping Zhu & Qi Zhang, 2023. "Autonomous underwater adhesion driven by water-induced interfacial rearrangement," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42209-2
    DOI: 10.1038/s41467-023-42209-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42209-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42209-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bohan Cheng & Jinhong Yu & Toma Arisawa & Koki Hayashi & Joseph J. Richardson & Yasushi Shibuta & Hirotaka Ejima, 2022. "Ultrastrong underwater adhesion on diverse substrates using non-canonical phenolic groups," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Bin Xue & Jie Gu & Lan Li & Wenting Yu & Sheng Yin & Meng Qin & Qing Jiang & Wei Wang & Yi Cao, 2021. "Hydrogel tapes for fault-tolerant strong wet adhesion," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao Pan & Qi-Qi Fu & Mo-Han Wang & Huai-Ling Gao & Liang Dong & Pu Zhou & Dong-Dong Cheng & Ying Chen & Duo-Hong Zou & Jia-Cai He & Xue Feng & Shu-Hong Yu, 2023. "Designing nanohesives for rapid, universal, and robust hydrogel adhesion," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yujie Hua & Kai Wang & Yingying Huo & Yaping Zhuang & Yuhui Wang & Wenzhuo Fang & Yuyan Sun & Guangdong Zhou & Qiang Fu & Wenguo Cui & Kaile Zhang, 2023. "Four-dimensional hydrogel dressing adaptable to the urethral microenvironment for scarless urethral reconstruction," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Yan Zhang & Yafei Wang & Ying Guan & Yongjun Zhang, 2022. "Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Yuanchi Zhang & Cairong Li & Along Guo & Yipei Yang & Yangyi Nie & Jiaxin Liao & Ben Liu & Yanmei Zhou & Long Li & Zhitong Chen & Wei Zhang & Ling Qin & Yuxiao Lai, 2024. "Black phosphorus boosts wet-tissue adhesion of composite patches by enhancing water absorption and mechanical properties," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Yutong He & Qian Li & Pinger Chen & Qixiang Duan & Jiamian Zhan & Xiaohui Cai & Leyu Wang & Honghao Hou & Xiaozhong Qiu, 2022. "A smart adhesive Janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Tuo Deng & Dongxiu Gao & Xuemei Song & Zhipeng Zhou & Lixiao Zhou & Maixian Tao & Zexiu Jiang & Lian Yang & Lan Luo & Ankun Zhou & Lin Hu & Hongbo Qin & Mingyi Wu, 2023. "A natural biological adhesive from snail mucus for wound repair," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Ran Yang & Xu Zhang & Binggang Chen & Qiuyan Yan & Jinghua Yin & Shifang Luan, 2023. "Tunable backbone-degradable robust tissue adhesives via in situ radical ring-opening polymerization," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Sheng-Chen Huang & Ya-Jiao Zhu & Xiao-Ying Huang & Xiao-Xia Xia & Zhi-Gang Qian, 2024. "Programmable adhesion and morphing of protein hydrogels for underwater robots," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42209-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.