IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002381.html
   My bibliography  Save this article

Self-charging power module for multidirectional ultra-low frequency mechanical vibration monitoring and energy harvesting

Author

Listed:
  • Huang, Mingkun
  • Long, Kaixiang
  • Luo, Yuecong
  • Li, Jingxing
  • Su, Cuicui
  • Gao, Xiangming
  • Guo, Shishang

Abstract

Timely monitoring of abnormal vibration of machinery in highly harsh environments is essential to ensure the safe operation of mechanical systems. This paper uses a self-charging power module to harvest energy to provide sustainable power for monitoring multidirectional ultra-low frequency mechanical vibrations. The power generation unit consists mainly of a spherical electromagnetic triboelectric hybrid nanogenerator (SETE-HNG). It is equipped with advanced sensing functions to support deep learning to identify signals with different directions of vibration, different frequencies, and different amplitudes of vibration, thereby enhancing the high-precision perception function. The accuracy of the prediction results is as high as 98.6622%, 100%, and 99.3333%, respectively. A Power Management Circuitry (PMC) has been meticulously crafted to maximize the utilization of vibrational energy. It efficiently charges a 40 mAh lithium polymer battery to 3.3 V in just 26 min, all without the requirement of an external power source. This advancement facilitates self-powered Global Positioning System (GPS) tracking of vibrational signals. Moreover, the stored energy is harnessed to energize a microcontroller and a low-power Bluetooth module. This enables real-time monitoring of mechanical vibrations via a mobile phone. The design presented in this paper is a testament to the potential of self-powered multidirectional mechanical vibration monitoring, contributing significantly to the safety and efficiency of mechanical systems.

Suggested Citation

  • Huang, Mingkun & Long, Kaixiang & Luo, Yuecong & Li, Jingxing & Su, Cuicui & Gao, Xiangming & Guo, Shishang, 2024. "Self-charging power module for multidirectional ultra-low frequency mechanical vibration monitoring and energy harvesting," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002381
    DOI: 10.1016/j.apenergy.2024.122855
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kai Dong & Xiao Peng & Jie An & Aurelia Chi Wang & Jianjun Luo & Baozhong Sun & Jie Wang & Zhong Lin Wang, 2020. "Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Yan Zhang & Yafei Wang & Ying Guan & Yongjun Zhang, 2022. "Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Wang, Lu & Fei, Zhenxuan & Duan, Congsheng & Han, Xiangguang & Li, Min & Gao, Wendi & Xia, Yong & Jia, Chen & Lin, Qijing & Zhao, Yihe & Li, Zhikang & Zhao, Libo & Jiang, Zhuangde & Maeda, Ryutaro, 2024. "Self-sustained and self-wakeup wireless vibration sensors by electromagnetic-piezoelectric-triboelectric hybrid energy harvesting," Applied Energy, Elsevier, vol. 355(C).
    4. Hao Wu & Steven Wang & Zuankai Wang & Yunlong Zi, 2021. "Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG)," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaomei Lin & Weifeng Yang & Xubin Zhu & Yubin Lan & Kerui Li & Qinghong Zhang & Yaogang Li & Chengyi Hou & Hongzhi Wang, 2024. "Triboelectric micro-flexure-sensitive fiber electronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zhou, Han & Liu, Guoxu & Bu, Tianzhao & Wang, Zheng & Cao, Jie & Wang, Zhaozheng & Zhang, Zhi & Dong, Sicheng & Zeng, Jianhua & Cao, Xiaoxin & Zhang, Chi, 2024. "Autonomous cantilever buck switch for ultra-efficient power management of triboelectric nanogenerator," Applied Energy, Elsevier, vol. 357(C).
    3. Xin Xia & Ziqing Zhou & Yinghui Shang & Yong Yang & Yunlong Zi, 2023. "Metallic glass-based triboelectric nanogenerators," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Yijie Liu & Xiaodong Wang & Shuaihang Hou & Zuoxu Wu & Jian Wang & Jun Mao & Qian Zhang & Zhiguo Liu & Feng Cao, 2023. "Scalable-produced 3D elastic thermoelectric network for body heat harvesting," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Xun Zhao & Yihao Zhou & Jing Xu & Guorui Chen & Yunsheng Fang & Trinny Tat & Xiao Xiao & Yang Song & Song Li & Jun Chen, 2021. "Soft fibers with magnetoelasticity for wearable electronics," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Changjun Jia & Yongsheng Zhu & Fengxin Sun & Yuzhang Wen & Qi Wang & Ying Li & Yupeng Mao & Chongle Zhao, 2022. "Gas-Supported Triboelectric Nanogenerator Based on In Situ Gap-Generation Method for Biomechanical Energy Harvesting and Wearable Motion Monitoring," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    7. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    8. Yikui Gao & Lixia He & Di Liu & Jiayue Zhang & Linglin Zhou & Zhong Lin Wang & Jie Wang, 2024. "Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Fan, Kangqi & Chen, Chenggen & Zhang, Baosen & Li, Xiang & Wang, Zhen & Cheng, Tinghai & Lin Wang, Zhong, 2022. "Robust triboelectric-electromagnetic hybrid nanogenerator with maglev-enabled automatic mode transition for exploiting breeze energy," Applied Energy, Elsevier, vol. 328(C).
    10. Hyung Woo Choi & Dong-Wook Shin & Jiajie Yang & Sanghyo Lee & Cátia Figueiredo & Stefano Sinopoli & Kay Ullrich & Petar Jovančić & Alessio Marrani & Roberto Momentè & João Gomes & Rita Branquinho & Um, 2022. "Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Chengkun Zhao & Xing Li & Xiaowen Han & Zhulian Li & Shaoquan Bian & Weinan Zeng & Mingming Ding & Jie Liang & Qing Jiang & Zongke Zhou & Yujiang Fan & Xingdong Zhang & Yong Sun, 2024. "Molecular co-assembled strategy tuning protein conformation for cartilage regeneration," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Di Liu & Linglin Zhou & Shengnan Cui & Yikui Gao & Shaoxin Li & Zhihao Zhao & Zhiying Yi & Haiyang Zou & Youjun Fan & Jie Wang & Zhong Lin Wang, 2022. "Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.