IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics030626192201251x.html
   My bibliography  Save this article

Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures

Author

Listed:
  • Ng, Ving Onn
  • Hong, XiangYu
  • Yu, Hao
  • Wu, HengAn
  • Hung, Yew Mun

Abstract

The thermal performance enhancement of micro heat pipe (MHP) array attributed to the incorporation of graphene nanoplatelets (GNPs) coatings with different wettability is investigated. The wettability of GNPs can be tuned to superhydrophilic and superhydrophobic via functionalization under thermal treatment. The micro/nano porous structures and ultrafast water transport property of the functionalized GNPs coatings are favourable to the three primary operational processes of an MHP, i.e., evaporation, condensation and circulation of working fluid. By coating superhydrophilic GNPs to the evaporator and superhydrophobic GNPs to the condenser, the evaporation and condensation strength can be simultaneously enhanced. The ultrafast water transport property of GNPs also provides nanocapillary effect which significantly enhances the circulation rate of working fluid. The combined enhancement of evaporation, condensation, and fluid circulation synergistically leads to anomalous thermal performance enhancement of MHP. By benchmarking with the uncoated MHP, the overall performance of a heterogeneous-wettability-coated MHP, as quantified by its effective thermal conductivity, manifests a maximum enhancement of 307%. An enhancement of 206% in the heat transfer coefficient and a dramatic temperature drop of 45 °C of the heated surface are achieved. To elucidate the underlying mechanism leading to the anomalous performance enhancement, molecular dynamics simulations are performed to investigate the ultrafast water transport through the superwettable GNPs nanostructures. This study paves the way for promising applications of heterogeneous superwettable GNPs nanostructures in micro-scale capillary-driven devices for electronics cooling.

Suggested Citation

  • Ng, Ving Onn & Hong, XiangYu & Yu, Hao & Wu, HengAn & Hung, Yew Mun, 2022. "Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s030626192201251x
    DOI: 10.1016/j.apenergy.2022.119994
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201251X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diao, Y.H. & Liang, L. & Zhao, Y.H. & Wang, Z.Y. & Bai, F.W., 2019. "Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe arrays," Applied Energy, Elsevier, vol. 233, pages 894-905.
    2. Yu, Min & Chen, Fucheng & Zheng, Siming & Zhou, Jinzhi & Zhao, Xudong & Wang, Zhangyuan & Li, Guiqiang & Li, Jing & Fan, Yi & Ji, Jie & Diallo, Theirno M.O. & Hardy, David, 2019. "Experimental Investigation of a Novel Solar Micro-Channel Loop-Heat-Pipe Photovoltaic/Thermal (MC-LHP-PV/T) System for Heat and Power Generation," Applied Energy, Elsevier, vol. 256(C).
    3. Tang, Heng & Tang, Yong & Wan, Zhenping & Li, Jie & Yuan, Wei & Lu, Longsheng & Li, Yong & Tang, Kairui, 2018. "Review of applications and developments of ultra-thin micro heat pipes for electronic cooling," Applied Energy, Elsevier, vol. 223(C), pages 383-400.
    4. Edalatpour, M. & Liu, L. & Jacobi, A.M. & Eid, K.F. & Sommers, A.D., 2018. "Managing water on heat transfer surfaces: A critical review of techniques to modify surface wettability for applications with condensation or evaporation," Applied Energy, Elsevier, vol. 222(C), pages 967-992.
    5. Fan, Qi & Wu, Lin & Liang, Yan & Xu, Zhicheng & Li, Yungeng & Wang, Jun & Lund, Peter D. & Zeng, Mengyuan & Wang, Wei, 2021. "The role of micro-nano pores in interfacial solar evaporation systems – A review," Applied Energy, Elsevier, vol. 292(C).
    6. Ng, Edmund Chong Jie & Kueh, Tze Cheng & Wang, Xin & Soh, Ai Kah & Hung, Yew Mun, 2021. "Anomalously enhanced thermal performance of carbon-nanotubes coated micro heat pipes," Energy, Elsevier, vol. 214(C).
    7. G. Algara-Siller & O. Lehtinen & F. C. Wang & R. R. Nair & U. Kaiser & H. A. Wu & A. K. Geim & I. V. Grigorieva, 2015. "Square ice in graphene nanocapillaries," Nature, Nature, vol. 519(7544), pages 443-445, March.
    8. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2020. "Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays," Applied Energy, Elsevier, vol. 261(C).
    9. B. Radha & A. Esfandiar & F. C. Wang & A. P. Rooney & K. Gopinadhan & A. Keerthi & A. Mishchenko & A. Janardanan & P. Blake & L. Fumagalli & M. Lozada-Hidalgo & S. Garaj & S. J. Haigh & I. V. Grigorie, 2016. "Molecular transport through capillaries made with atomic-scale precision," Nature, Nature, vol. 538(7624), pages 222-225, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Wenpeng & Mu, Yuhan & Lan, Jingrui & Jin, Xu & Wang, Xinzhi & Li, Haoran, 2024. "Improving vapor condensation via copper foam in capillary-fed photovoltaic membrane distillation," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    4. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Nawapong Unsuree & Sorasak Phanphak & Pongthep Prajongtat & Aritsa Bunpheng & Kulpavee Jitapunkul & Pornpis Kongputhon & Pannaree Srinoi & Pawin Iamprasertkun & Wisit Hirunpinyopas, 2021. "A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives," Energies, MDPI, vol. 14(18), pages 1-38, September.
    6. Wang, Xianling & Yang, Jingxuan & Wen, Qiaowei & Shittu, Samson & Liu, Guangming & Qiu, Zining & Zhao, Xudong & Wang, Zhangyuan, 2022. "Visualization study of a flat confined loop heat pipe for electronic devices cooling," Applied Energy, Elsevier, vol. 322(C).
    7. Zhipeng Wang & Liqin Huang & Xue Dong & Tong Wu & Qi Qing & Jing Chen & Yuexiang Lu & Chao Xu, 2023. "Ion sieving in graphene oxide membrane enables efficient actinides/lanthanides separation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Cheng Chi & Gongze Liu & Meng An & Yufeng Zhang & Dongxing Song & Xin Qi & Chunyu Zhao & Zequn Wang & Yanzheng Du & Zizhen Lin & Yang Lu & He Huang & Yang Li & Chongjia Lin & Weigang Ma & Baoling Huan, 2023. "Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Hajabdollahi, Hassan, 2021. "Thermoeconomic assessment of integrated solar flat plat collector with cross flow heat exchanger as solar air heater using numerical analysis," Renewable Energy, Elsevier, vol. 168(C), pages 491-504.
    10. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    11. Wang, Xueli & Zhang, Pengju & Du, Yan & Liu, Lang & Fang, Jiabin & Ji, Changfa & Wang, Mei & Zhang, Bo & Huan, Chao, 2024. "Numerical investigation on the heat storage/heat release performance enhancement of phase change cemented paste backfill body with using casing-type heat pipe heat exchangers," Renewable Energy, Elsevier, vol. 225(C).
    12. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Liang, L. & Wang, T.Y. & An, Y., 2021. "Optimization of phase change thermal storage units/devices with multichannel flat tubes: A theoretical study," Renewable Energy, Elsevier, vol. 167(C), pages 700-717.
    13. Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
    14. Chen, Gong & Tang, Yong & Duan, Longhua & Tang, Heng & Zhong, Guisheng & Wan, Zhenping & Zhang, Shiwei & Fu, Ting, 2020. "Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors," Renewable Energy, Elsevier, vol. 146(C), pages 2234-2242.
    15. Ustaoglu, Abid & Ozbey, Umut & Torlaklı, Hande, 2020. "Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic –trumpet, V-trough and compound parabolic concentrators," Renewable Energy, Elsevier, vol. 152(C), pages 1192-1208.
    16. Zheng, Senlin & Qiu, Zining & He, Caiwei & Wang, Xianling & Wang, Xupeng & Wang, Zhangyuan & Zhao, Xudong & Shittu, Samson, 2022. "Research on heat transfer mechanism and performance of a novel adaptive enclosure structure based on micro-channel heat pipe," Energy, Elsevier, vol. 254(PB).
    17. Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
    18. Liang, L. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Chen, C.Q., 2021. "Experimental and numerical investigations of latent thermal energy storage using combined flat micro-heat pipe array–metal foam configuration: Simultaneous charging and discharging," Renewable Energy, Elsevier, vol. 171(C), pages 416-430.
    19. Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.
    20. Xinyue Wen & Tobias Foller & Xiaoheng Jin & Tiziana Musso & Priyank Kumar & Rakesh Joshi, 2022. "Understanding water transport through graphene-based nanochannels via experimental control of slip length," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s030626192201251x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.