IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34124-9.html
   My bibliography  Save this article

Critical role of water structure around interlayer ions for ion storage in layered double hydroxides

Author

Listed:
  • Tomohito Sudare

    (Shinshu University)

  • Takuro Yamaguchi

    (Shinshu University)

  • Mizuki Ueda

    (Shinshu University)

  • Hiromasa Shiiba

    (Shinshu University)

  • Hideki Tanaka

    (Shinshu University)

  • Mongkol Tipplook

    (Shinshu University)

  • Fumitaka Hayashi

    (Shinshu University)

  • Katsuya Teshima

    (Shinshu University
    Shinshu University)

Abstract

Water-containing layered materials have found various applications such as water purification and energy storage. The highly structured water molecules around ions under the confinement between the layers determine the ion storage ability. Yet, the relationship between the configuration of interlayer ions and water structure in high ion storage layered materials is elusive. Herein, using layered double hydroxides, we demonstrate that the water structure is sensitive to the filling density of ions in the interlayer space and governs the ion storage. For ion storage of dilute nitrate ions, a 24% decrease in the filling density increases the nitrate storage capacity by 300%. Quartz crystal microbalance with dissipation monitoring studies, combined with multimodal ex situ experiments and theoretical calculations, reveal that the decreasing filling density effectively facilitates the 2D hydrogen-bond networking structure in water around interlayer nitrate ions along with minimal change in the layered structure, leading to the high storage capacity.

Suggested Citation

  • Tomohito Sudare & Takuro Yamaguchi & Mizuki Ueda & Hiromasa Shiiba & Hideki Tanaka & Mongkol Tipplook & Fumitaka Hayashi & Katsuya Teshima, 2022. "Critical role of water structure around interlayer ions for ion storage in layered double hydroxides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34124-9
    DOI: 10.1038/s41467-022-34124-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34124-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34124-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Akira Sugahara & Yasunobu Ando & Satoshi Kajiyama & Koji Yazawa & Kazuma Gotoh & Minoru Otani & Masashi Okubo & Atsuo Yamada, 2019. "Negative dielectric constant of water confined in nanosheets," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. G. Algara-Siller & O. Lehtinen & F. C. Wang & R. R. Nair & U. Kaiser & H. A. Wu & A. K. Geim & I. V. Grigorieva, 2015. "Square ice in graphene nanocapillaries," Nature, Nature, vol. 519(7544), pages 443-445, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Kohler & Olivier Pierre-Louis & Dag Kristian Dysthe, 2022. "Crystal growth in confinement," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Hao-Ting Chin & Jiri Klimes & I-Fan Hu & Ding-Rui Chen & Hai-Thai Nguyen & Ting-Wei Chen & Shao-Wei Ma & Mario Hofmann & Chi-Te Liang & Ya-Ping Hsieh, 2021. "Ferroelectric 2D ice under graphene confinement," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Mailis Lounasvuori & Yangyunli Sun & Tyler S. Mathis & Ljiljana Puskar & Ulrich Schade & De-En Jiang & Yury Gogotsi & Tristan Petit, 2023. "Vibrational signature of hydrated protons confined in MXene interlayers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Pavan Ravindra & Xavier R. Advincula & Christoph Schran & Angelos Michaelides & Venkat Kapil, 2024. "Quasi-one-dimensional hydrogen bonding in nanoconfined ice," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Tong, Xuan & Li, Nianqi & Zeng, Min & Wang, Qiuwang, 2019. "Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 398-422.
    8. Xin Yu & Wencai Ren, 2023. "2D CdPS3-based versatile superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Ng, Ving Onn & Hong, XiangYu & Yu, Hao & Wu, HengAn & Hung, Yew Mun, 2022. "Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures," Applied Energy, Elsevier, vol. 326(C).
    10. Ruijian Zhu & Yanting Wang, 2024. "A critical edge number revealed for phase stabilities of two-dimensional ball-stick polygons," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Nawapong Unsuree & Sorasak Phanphak & Pongthep Prajongtat & Aritsa Bunpheng & Kulpavee Jitapunkul & Pornpis Kongputhon & Pannaree Srinoi & Pawin Iamprasertkun & Wisit Hirunpinyopas, 2021. "A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives," Energies, MDPI, vol. 14(18), pages 1-38, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34124-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.