IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34266-w.html
   My bibliography  Save this article

Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration

Author

Listed:
  • Marketa Kaucka

    (Max Planck Institute for Evolutionary Biology)

  • Alberto Joven Araus

    (Karolinska Institute)

  • Marketa Tesarova

    (Brno University of Technology)

  • Joshua D. Currie

    (Wake Forest University)

  • Johan Boström

    (Medical University Vienna)

  • Michaela Kavkova

    (Brno University of Technology)

  • Julian Petersen

    (Medical University Vienna
    University of Leipzig Medical Center)

  • Zeyu Yao

    (Karolinska Institute)

  • Anass Bouchnita

    (Uppsala University
    The University of Texas at El Paso)

  • Andreas Hellander

    (Uppsala University)

  • Tomas Zikmund

    (Brno University of Technology)

  • Ahmed Elewa

    (Karolinska Institute
    University of Barcelona)

  • Phillip T. Newton

    (Karolinska Institute
    Astrid Lindgren Children’s Hospital, Karolinska University Hospital)

  • Ji-Feng Fei

    (The Research Institute of Molecular Pathology (IMP)
    Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences)

  • Andrei S. Chagin

    (Karolinska Institutet
    University of Gothenburg)

  • Kaj Fried

    (Karolinska Institute)

  • Elly M. Tanaka

    (The Research Institute of Molecular Pathology (IMP))

  • Jozef Kaiser

    (Brno University of Technology)

  • András Simon

    (Karolinska Institute)

  • Igor Adameyko

    (Medical University Vienna
    Karolinska Institutet)

Abstract

There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.

Suggested Citation

  • Marketa Kaucka & Alberto Joven Araus & Marketa Tesarova & Joshua D. Currie & Johan Boström & Michaela Kavkova & Julian Petersen & Zeyu Yao & Anass Bouchnita & Andreas Hellander & Tomas Zikmund & Ahmed, 2022. "Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34266-w
    DOI: 10.1038/s41467-022-34266-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34266-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34266-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Phillip T. Newton & Lei Li & Baoyi Zhou & Christoph Schweingruber & Maria Hovorakova & Meng Xie & Xiaoyan Sun & Lakshmi Sandhow & Artem V. Artemov & Evgeny Ivashkin & Simon Suter & Vyacheslav Dyachuk , 2019. "A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate," Nature, Nature, vol. 567(7747), pages 234-238, March.
    2. Henry M. Kronenberg, 2003. "Developmental regulation of the growth plate," Nature, Nature, vol. 423(6937), pages 332-336, May.
    3. Kimberly L. Cooper & Karen E. Sears & Aysu Uygur & Jennifer Maier & Karl-Stephan Baczkowski & Margaret Brosnahan & Doug Antczak & Julian A. Skidmore & Clifford J. Tabin, 2014. "Patterning and post-patterning modes of evolutionary digit loss in mammals," Nature, Nature, vol. 511(7507), pages 41-45, July.
    4. Koji Mizuhashi & Wanida Ono & Yuki Matsushita & Naoko Sakagami & Akira Takahashi & Thomas L. Saunders & Takashi Nagasawa & Henry M. Kronenberg & Noriaki Ono, 2018. "Resting zone of the growth plate houses a unique class of skeletal stem cells," Nature, Nature, vol. 563(7730), pages 254-258, November.
    5. Shawon Debnath & Alisha R. Yallowitz & Jason McCormick & Sarfaraz Lalani & Tuo Zhang & Ren Xu & Na Li & Yifang Liu & Yeon Suk Yang & Mark Eiseman & Jae-Hyuck Shim & Meera Hameed & John H. Healey & Mat, 2018. "Discovery of a periosteal stem cell mediating intramembranous bone formation," Nature, Nature, vol. 562(7725), pages 133-139, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masayuki Tsukasaki & Noriko Komatsu & Takako Negishi-Koga & Nam Cong-Nhat Huynh & Ryunosuke Muro & Yutaro Ando & Yuka Seki & Asuka Terashima & Warunee Pluemsakunthai & Takeshi Nitta & Takashi Nakamura, 2022. "Periosteal stem cells control growth plate stem cells during postnatal skeletal growth," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yuki Matsushita & Jialin Liu & Angel Ka Yan Chu & Chiaki Tsutsumi-Arai & Mizuki Nagata & Yuki Arai & Wanida Ono & Kouhei Yamamoto & Thomas L. Saunders & Joshua D. Welch & Noriaki Ono, 2023. "Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    3. Chee Ho H’ng & Shanika L. Amarasinghe & Boya Zhang & Hojin Chang & Xinli Qu & David R. Powell & Alberto Rosello-Diez, 2024. "Compensatory growth and recovery of cartilage cytoarchitecture after transient cell death in fetal mouse limbs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Cheng-Hai Zhang & Yao Gao & Han-Hwa Hung & Zhu Zhuo & Alan J. Grodzinsky & Andrew B. Lassar, 2022. "Creb5 coordinates synovial joint formation with the genesis of articular cartilage," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Aaron Warren & Ryan M. Porter & Olivia Reyes-Castro & Md Mohsin Ali & Adriana Marques-Carvalho & Ha-Neui Kim & Landon B. Gatrell & Ernestina Schipani & Intawat Nookaew & Charles A. O’Brien & Roy Morel, 2023. "The NAD salvage pathway in mesenchymal cells is indispensable for skeletal development in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Yuki Matsushita & Angel Ka Yan Chu & Chiaki Tsutsumi-Arai & Shion Orikasa & Mizuki Nagata & Sunny Y. Wong & Joshua D. Welch & Wanida Ono & Noriaki Ono, 2022. "The fate of early perichondrial cells in developing bones," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Shanmugam Muruganandan & Rachel Pierce & Dian Astari Teguh & Rocio Fuente Perez & Nicole Bell & Brandon Nguyen & Katherine Hohl & Brian D. Snyder & Mark W. Grinstaff & Hannah Alberico & Dori Woods & Y, 2022. "A FoxA2+ long-term stem cell population is necessary for growth plate cartilage regeneration after injury," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Xianzhu Zhang & Wei Jiang & Chang Xie & Xinyu Wu & Qian Ren & Fei Wang & Xilin Shen & Yi Hong & Hongwei Wu & Youguo Liao & Yi Zhang & Renjie Liang & Wei Sun & Yuqing Gu & Tao Zhang & Yishan Chen & Wei, 2022. "Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Reza Mirzazadeh & Zaneta Andrusivova & Ludvig Larsson & Phillip T. Newton & Leire Alonso Galicia & Xesús M. Abalo & Mahtab Avijgan & Linda Kvastad & Alexandre Denadai-Souza & Nathalie Stakenborg & Ale, 2023. "Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Greg Holmes & Ana S. Gonzalez-Reiche & Madrikha Saturne & Susan M. Motch Perrine & Xianxiao Zhou & Ana C. Borges & Bhavana Shewale & Joan T. Richtsmeier & Bin Zhang & Harm Bakel & Ethylin Wang Jabs, 2021. "Single-cell analysis identifies a key role for Hhip in murine coronal suture development," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    11. D’Juan T. Farmer & Jennifer E. Dukov & Hung-Jhen Chen & Claire Arata & Jose Hernandez-Trejo & Pengfei Xu & Camilla S. Teng & Robert E. Maxson & J. Gage Crump, 2024. "Cellular transitions during cranial suture establishment in zebrafish," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Megan Lo & Amnon Sharir & Michael D. Paul & Hayarpi Torosyan & Christopher Agnew & Amy Li & Cynthia Neben & Pauline Marangoni & Libin Xu & David R. Raleigh & Natalia Jura & Ophir D. Klein, 2022. "CNPY4 inhibits the Hedgehog pathway by modulating membrane sterol lipids," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Żaneta Ciosek & Karolina Kot & Iwona Rotter, 2023. "Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    14. Johan Kerkhofs & Liesbet Geris, 2015. "A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-23, June.
    15. Madison L. Doolittle & Dominik Saul & Japneet Kaur & Jennifer L. Rowsey & Stephanie J. Vos & Kevin D. Pavelko & Joshua N. Farr & David G. Monroe & Sundeep Khosla, 2023. "Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Diego Garzón-Alvarado, 2011. "Can the size of the epiphysis determine the number of secondary ossification centers? A mathematical approach," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 14(09), pages 819-826.
    17. Diego A. Garzón-Alvarado, 2014. "A biochemical strategy for simulation of endochondral and intramembranous ossification," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(11), pages 1237-1247, August.
    18. Lijun Wang & Xiuling You & Dengfeng Ruan & Rui Shao & Hai-Qiang Dai & Weiliang Shen & Guo-Liang Xu & Wanlu Liu & Weiguo Zou, 2022. "TET enzymes regulate skeletal development through increasing chromatin accessibility of RUNX2 target genes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Zan Li & Baohong Shi & Na Li & Jun Sun & Xiangchen Zeng & Rui Huang & Seoyeon Bok & Xiaohui Chen & Jie Han & Alisha R. Yallowitz & Shawon Debnath & Michelle Cung & Zheng Ling & Chuan-Qi Zhong & Yixang, 2024. "Bone controls browning of white adipose tissue and protects from diet-induced obesity through Schnurri-3-regulated SLIT2 secretion," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Yuyao Tian & Wuming Wang & Sofie Lautrup & Hui Zhao & Xiang Li & Patrick Wai Nok Law & Ngoc-Duy Dinh & Evandro Fei Fang & Hoi Hung Cheung & Wai-Yee Chan, 2022. "WRN promotes bone development and growth by unwinding SHOX-G-quadruplexes via its helicase activity in Werner Syndrome," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34266-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.