IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31592-x.html
   My bibliography  Save this article

Periosteal stem cells control growth plate stem cells during postnatal skeletal growth

Author

Listed:
  • Masayuki Tsukasaki

    (The University of Tokyo)

  • Noriko Komatsu

    (The University of Tokyo)

  • Takako Negishi-Koga

    (Juntendo University Graduate School of Medicine)

  • Nam Cong-Nhat Huynh

    (The University of Tokyo
    University of Medicine and Pharmacy at Ho Chi Minh City)

  • Ryunosuke Muro

    (The University of Tokyo)

  • Yutaro Ando

    (The University of Tokyo
    Tokyo Dental College)

  • Yuka Seki

    (The University of Tokyo)

  • Asuka Terashima

    (The University of Tokyo
    The University of Tokyo Hospital)

  • Warunee Pluemsakunthai

    (The University of Tokyo)

  • Takeshi Nitta

    (The University of Tokyo)

  • Takashi Nakamura

    (Tokyo Dental College)

  • Tomoki Nakashima

    (Tokyo Medical and Dental University)

  • Shinsuke Ohba

    (Nagasaki University
    Osaka University)

  • Haruhiko Akiyama

    (Gifu University)

  • Kazuo Okamoto

    (The University of Tokyo)

  • Roland Baron

    (Harvard School of Dental Medicine
    Harvard Medical School and Endocrine Unit, MGH)

  • Hiroshi Takayanagi

    (The University of Tokyo)

Abstract

The ontogeny and fate of stem cells have been extensively investigated by lineage-tracing approaches. At distinct anatomical sites, bone tissue harbors multiple types of skeletal stem cells, which may independently supply osteogenic cells in a site-specific manner. Periosteal stem cells (PSCs) and growth plate resting zone stem cells (RZSCs) critically contribute to intramembranous and endochondral bone formation, respectively. However, it remains unclear whether there is functional crosstalk between these two types of skeletal stem cells. Here we show PSCs are not only required for intramembranous bone formation, but also for the growth plate maintenance and prolonged longitudinal bone growth. Mice deficient in PSCs display progressive defects in intramembranous and endochondral bone formation, the latter of which is caused by a deficiency in PSC-derived Indian hedgehog (Ihh). PSC-specific deletion of Ihh impairs the maintenance of the RZSCs, leading to a severe defect in endochondral bone formation in postnatal life. Thus, crosstalk between periosteal and growth plate stem cells is essential for post-developmental skeletal growth.

Suggested Citation

  • Masayuki Tsukasaki & Noriko Komatsu & Takako Negishi-Koga & Nam Cong-Nhat Huynh & Ryunosuke Muro & Yutaro Ando & Yuka Seki & Asuka Terashima & Warunee Pluemsakunthai & Takeshi Nitta & Takashi Nakamura, 2022. "Periosteal stem cells control growth plate stem cells during postnatal skeletal growth," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31592-x
    DOI: 10.1038/s41467-022-31592-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31592-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31592-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Phillip T. Newton & Lei Li & Baoyi Zhou & Christoph Schweingruber & Maria Hovorakova & Meng Xie & Xiaoyan Sun & Lakshmi Sandhow & Artem V. Artemov & Evgeny Ivashkin & Simon Suter & Vyacheslav Dyachuk , 2019. "A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate," Nature, Nature, vol. 567(7747), pages 234-238, March.
    2. Henry M. Kronenberg, 2003. "Developmental regulation of the growth plate," Nature, Nature, vol. 423(6937), pages 332-336, May.
    3. Masayuki Tsukasaki & Noriko Komatsu & Kazuki Nagashima & Takeshi Nitta & Warunee Pluemsakunthai & Chisa Shukunami & Yoichiro Iwakura & Tomoki Nakashima & Kazuo Okamoto & Hiroshi Takayanagi, 2018. "Host defense against oral microbiota by bone-damaging T cells," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    4. Koji Mizuhashi & Wanida Ono & Yuki Matsushita & Naoko Sakagami & Akira Takahashi & Thomas L. Saunders & Takashi Nagasawa & Henry M. Kronenberg & Noriaki Ono, 2018. "Resting zone of the growth plate houses a unique class of skeletal stem cells," Nature, Nature, vol. 563(7730), pages 254-258, November.
    5. Mikihito Hayashi & Tomoki Nakashima & Masahiko Taniguchi & Tatsuhiko Kodama & Atsushi Kumanogoh & Hiroshi Takayanagi, 2012. "Osteoprotection by semaphorin 3A," Nature, Nature, vol. 485(7396), pages 69-74, May.
    6. Wentian Yang & Jianguo Wang & Douglas C. Moore & Haipei Liang & Mark Dooner & Qian Wu & Richard Terek & Qian Chen & Michael G. Ehrlich & Peter J. Quesenberry & Benjamin G. Neel, 2013. "Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling," Nature, Nature, vol. 499(7459), pages 491-495, July.
    7. Oriane Duchamp de Lageneste & Anaïs Julien & Rana Abou-Khalil & Giulia Frangi & Caroline Carvalho & Nicolas Cagnard & Corinne Cordier & Simon J. Conway & Céline Colnot, 2018. "Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    8. Atsuko Shimada & Toru Kawanishi & Takuya Kaneko & Hiroki Yoshihara & Tohru Yano & Keiji Inohaya & Masato Kinoshita & Yasuhiro Kamei & Koji Tamura & Hiroyuki Takeda, 2013. "Trunk exoskeleton in teleosts is mesodermal in origin," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    9. Shawon Debnath & Alisha R. Yallowitz & Jason McCormick & Sarfaraz Lalani & Tuo Zhang & Ren Xu & Na Li & Yifang Liu & Yeon Suk Yang & Mark Eiseman & Jae-Hyuck Shim & Meera Hameed & John H. Healey & Mat, 2018. "Discovery of a periosteal stem cell mediating intramembranous bone formation," Nature, Nature, vol. 562(7725), pages 133-139, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuki Matsushita & Jialin Liu & Angel Ka Yan Chu & Chiaki Tsutsumi-Arai & Mizuki Nagata & Yuki Arai & Wanida Ono & Kouhei Yamamoto & Thomas L. Saunders & Joshua D. Welch & Noriaki Ono, 2023. "Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    2. Marketa Kaucka & Alberto Joven Araus & Marketa Tesarova & Joshua D. Currie & Johan Boström & Michaela Kavkova & Julian Petersen & Zeyu Yao & Anass Bouchnita & Andreas Hellander & Tomas Zikmund & Ahmed, 2022. "Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Yuki Matsushita & Angel Ka Yan Chu & Chiaki Tsutsumi-Arai & Shion Orikasa & Mizuki Nagata & Sunny Y. Wong & Joshua D. Welch & Wanida Ono & Noriaki Ono, 2022. "The fate of early perichondrial cells in developing bones," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Chee Ho H’ng & Shanika L. Amarasinghe & Boya Zhang & Hojin Chang & Xinli Qu & David R. Powell & Alberto Rosello-Diez, 2024. "Compensatory growth and recovery of cartilage cytoarchitecture after transient cell death in fetal mouse limbs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Cheng-Hai Zhang & Yao Gao & Han-Hwa Hung & Zhu Zhuo & Alan J. Grodzinsky & Andrew B. Lassar, 2022. "Creb5 coordinates synovial joint formation with the genesis of articular cartilage," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Aaron Warren & Ryan M. Porter & Olivia Reyes-Castro & Md Mohsin Ali & Adriana Marques-Carvalho & Ha-Neui Kim & Landon B. Gatrell & Ernestina Schipani & Intawat Nookaew & Charles A. O’Brien & Roy Morel, 2023. "The NAD salvage pathway in mesenchymal cells is indispensable for skeletal development in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Xianzhu Zhang & Wei Jiang & Chang Xie & Xinyu Wu & Qian Ren & Fei Wang & Xilin Shen & Yi Hong & Hongwei Wu & Youguo Liao & Yi Zhang & Renjie Liang & Wei Sun & Yuqing Gu & Tao Zhang & Yishan Chen & Wei, 2022. "Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Shanmugam Muruganandan & Rachel Pierce & Dian Astari Teguh & Rocio Fuente Perez & Nicole Bell & Brandon Nguyen & Katherine Hohl & Brian D. Snyder & Mark W. Grinstaff & Hannah Alberico & Dori Woods & Y, 2022. "A FoxA2+ long-term stem cell population is necessary for growth plate cartilage regeneration after injury," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Anhao Liu & Mikihito Hayashi & Yujin Ohsugi & Sayaka Katagiri & Shizuo Akira & Takanori Iwata & Tomoki Nakashima, 2024. "The IL-33/ST2 axis is protective against acute inflammation during the course of periodontitis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Yuteng Weng & Yanhuizhi Feng & Zeyuan Li & Shuyu Xu & Di Wu & Jie Huang & Haicheng Wang & Zuolin Wang, 2024. "Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Reza Mirzazadeh & Zaneta Andrusivova & Ludvig Larsson & Phillip T. Newton & Leire Alonso Galicia & Xesús M. Abalo & Mahtab Avijgan & Linda Kvastad & Alexandre Denadai-Souza & Nathalie Stakenborg & Ale, 2023. "Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Greg Holmes & Ana S. Gonzalez-Reiche & Madrikha Saturne & Susan M. Motch Perrine & Xianxiao Zhou & Ana C. Borges & Bhavana Shewale & Joan T. Richtsmeier & Bin Zhang & Harm Bakel & Ethylin Wang Jabs, 2021. "Single-cell analysis identifies a key role for Hhip in murine coronal suture development," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    13. Fenli Shao & Qianqian Liu & Yuyu Zhu & Zhidan Fan & Wenjun Chen & Shijia Liu & Xiaohui Li & Wenjie Guo & Gen-Sheng Feng & Haiguo Yu & Qiang Xu & Yang Sun, 2021. "Targeting chondrocytes for arresting bony fusion in ankylosing spondylitis," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    14. D’Juan T. Farmer & Jennifer E. Dukov & Hung-Jhen Chen & Claire Arata & Jose Hernandez-Trejo & Pengfei Xu & Camilla S. Teng & Robert E. Maxson & J. Gage Crump, 2024. "Cellular transitions during cranial suture establishment in zebrafish," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Chujiao Lin & Qiyuan Yang & Dongsheng Guo & Jun Xie & Yeon-Suk Yang & Sachin Chaugule & Ngoc DeSouza & Won-Taek Oh & Rui Li & Zhihao Chen & Aijaz A. John & Qiang Qiu & Lihua Julie Zhu & Matthew B. Gre, 2022. "Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Żaneta Ciosek & Karolina Kot & Iwona Rotter, 2023. "Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    17. Johan Kerkhofs & Liesbet Geris, 2015. "A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-23, June.
    18. Madison L. Doolittle & Dominik Saul & Japneet Kaur & Jennifer L. Rowsey & Stephanie J. Vos & Kevin D. Pavelko & Joshua N. Farr & David G. Monroe & Sundeep Khosla, 2023. "Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    19. Diego Garzón-Alvarado, 2011. "Can the size of the epiphysis determine the number of secondary ossification centers? A mathematical approach," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 14(09), pages 819-826.
    20. Maki Uenaka & Erika Yamashita & Junichi Kikuta & Akito Morimoto & Tomoka Ao & Hiroki Mizuno & Masayuki Furuya & Tetsuo Hasegawa & Hiroyuki Tsukazaki & Takao Sudo & Keizo Nishikawa & Daisuke Okuzaki & , 2022. "Osteoblast-derived vesicles induce a switch from bone-formation to bone-resorption in vivo," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31592-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.