Discovery of a periosteal stem cell mediating intramembranous bone formation
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-018-0554-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuki Matsushita & Angel Ka Yan Chu & Chiaki Tsutsumi-Arai & Shion Orikasa & Mizuki Nagata & Sunny Y. Wong & Joshua D. Welch & Wanida Ono & Noriaki Ono, 2022. "The fate of early perichondrial cells in developing bones," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Xianzhu Zhang & Wei Jiang & Chang Xie & Xinyu Wu & Qian Ren & Fei Wang & Xilin Shen & Yi Hong & Hongwei Wu & Youguo Liao & Yi Zhang & Renjie Liang & Wei Sun & Yuqing Gu & Tao Zhang & Yishan Chen & Wei, 2022. "Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
- Zan Li & Baohong Shi & Na Li & Jun Sun & Xiangchen Zeng & Rui Huang & Seoyeon Bok & Xiaohui Chen & Jie Han & Alisha R. Yallowitz & Shawon Debnath & Michelle Cung & Zheng Ling & Chuan-Qi Zhong & Yixang, 2024. "Bone controls browning of white adipose tissue and protects from diet-induced obesity through Schnurri-3-regulated SLIT2 secretion," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Lijun Wang & Xiuling You & Dengfeng Ruan & Rui Shao & Hai-Qiang Dai & Weiliang Shen & Guo-Liang Xu & Wanlu Liu & Weiguo Zou, 2022. "TET enzymes regulate skeletal development through increasing chromatin accessibility of RUNX2 target genes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Marketa Kaucka & Alberto Joven Araus & Marketa Tesarova & Joshua D. Currie & Johan Boström & Michaela Kavkova & Julian Petersen & Zeyu Yao & Anass Bouchnita & Andreas Hellander & Tomas Zikmund & Ahmed, 2022. "Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Masayuki Tsukasaki & Noriko Komatsu & Takako Negishi-Koga & Nam Cong-Nhat Huynh & Ryunosuke Muro & Yutaro Ando & Yuka Seki & Asuka Terashima & Warunee Pluemsakunthai & Takeshi Nitta & Takashi Nakamura, 2022. "Periosteal stem cells control growth plate stem cells during postnatal skeletal growth," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Greg Holmes & Ana S. Gonzalez-Reiche & Madrikha Saturne & Susan M. Motch Perrine & Xianxiao Zhou & Ana C. Borges & Bhavana Shewale & Joan T. Richtsmeier & Bin Zhang & Harm Bakel & Ethylin Wang Jabs, 2021. "Single-cell analysis identifies a key role for Hhip in murine coronal suture development," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
- Madison L. Doolittle & Dominik Saul & Japneet Kaur & Jennifer L. Rowsey & Stephanie J. Vos & Kevin D. Pavelko & Joshua N. Farr & David G. Monroe & Sundeep Khosla, 2023. "Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Cheng-Hai Zhang & Yao Gao & Han-Hwa Hung & Zhu Zhuo & Alan J. Grodzinsky & Andrew B. Lassar, 2022. "Creb5 coordinates synovial joint formation with the genesis of articular cartilage," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
- Yuteng Weng & Yanhuizhi Feng & Zeyuan Li & Shuyu Xu & Di Wu & Jie Huang & Haicheng Wang & Zuolin Wang, 2024. "Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Yuki Matsushita & Jialin Liu & Angel Ka Yan Chu & Chiaki Tsutsumi-Arai & Mizuki Nagata & Yuki Arai & Wanida Ono & Kouhei Yamamoto & Thomas L. Saunders & Joshua D. Welch & Noriaki Ono, 2023. "Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
More about this item
Keywords
Periosteal Stem Cells (PSCs); Intramembranous Bone Formation; Multipotent Clones; Bone-forming Capacity; Human Periosteum;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:562:y:2018:i:7725:d:10.1038_s41586-018-0554-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.