IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34087-x.html
   My bibliography  Save this article

Divergent regulation of basement membrane trafficking by human macrophages and cancer cells

Author

Listed:
  • Julian C. Bahr

    (University of Michigan
    University of Michigan)

  • Xiao-Yan Li

    (University of Michigan
    University of Michigan
    University of Michigan)

  • Tamar Y. Feinberg

    (University of Michigan
    University of Michigan
    University of Michigan)

  • Long Jiang

    (University of Michigan
    University of Michigan
    University of Michigan)

  • Stephen J. Weiss

    (University of Michigan
    University of Michigan
    University of Michigan
    University of Michigan)

Abstract

Macrophages and cancer cells populations are posited to navigate basement membrane barriers by either mobilizing proteolytic enzymes or deploying mechanical forces. Nevertheless, the relative roles, or identity, of the proteinase -dependent or -independent mechanisms used by macrophages versus cancer cells to transmigrate basement membrane barriers harboring physiologically-relevant covalent crosslinks remains ill-defined. Herein, both macrophages and cancer cells are shown to mobilize membrane-anchored matrix metalloproteinases to proteolytically remodel native basement membranes isolated from murine tissues while infiltrating the underlying interstitial matrix ex vivo. In the absence of proteolytic activity, however, only macrophages deploy actomyosin-generated forces to transmigrate basement membrane pores, thereby providing the cells with proteinase-independent access to the interstitial matrix while simultaneously exerting global effects on the macrophage transcriptome. By contrast, cancer cell invasive activity is reliant on metalloproteinase activity and neither mechanical force nor changes in nuclear rigidity rescue basement membrane transmigration. These studies identify membrane-anchored matrix metalloproteinases as key proteolytic effectors of basement membrane remodeling by macrophages and cancer cells while also defining the divergent invasive strategies used by normal and neoplastic cells to traverse native tissue barriers.

Suggested Citation

  • Julian C. Bahr & Xiao-Yan Li & Tamar Y. Feinberg & Long Jiang & Stephen J. Weiss, 2022. "Divergent regulation of basement membrane trafficking by human macrophages and cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34087-x
    DOI: 10.1038/s41467-022-34087-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34087-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34087-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christos Kyprianou & Neophytos Christodoulou & Russell S. Hamilton & Wallis Nahaboo & Diana Suarez Boomgaard & Gianluca Amadei & Isabelle Migeotte & Magdalena Zernicka-Goetz, 2020. "Basement membrane remodelling regulates mouse embryogenesis," Nature, Nature, vol. 582(7811), pages 253-258, June.
    2. Katrina M. Wisdom & Kolade Adebowale & Julie Chang & Joanna Y. Lee & Sungmin Nam & Rajiv Desai & Ninna Struck Rossen & Marjan Rafat & Robert B. West & Louis Hodgson & Ovijit Chaudhuri, 2018. "Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Neha Diwanji & Andreas Bergmann, 2020. "Basement membrane damage by ROS- and JNK-mediated Mmp2 activation drives macrophage recruitment to overgrown tissue," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    4. Robin Ferrari & Gaëlle Martin & Oya Tagit & Alan Guichard & Alessandra Cambi & Raphaël Voituriez & Stéphane Vassilopoulos & Philippe Chavrier, 2019. "MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    5. Thomas A. Wynn & Ajay Chawla & Jeffrey W. Pollard, 2013. "Macrophage biology in development, homeostasis and disease," Nature, Nature, vol. 496(7446), pages 445-455, April.
    6. Hawa-Racine Thiam & Pablo Vargas & Nicolas Carpi & Carolina Lage Crespo & Matthew Raab & Emmanuel Terriac & Megan C. King & Jordan Jacobelli & Arthur S. Alberts & Theresia Stradal & Ana-Maria Lennon-D, 2016. "Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments," Nature Communications, Nature, vol. 7(1), pages 1-14, April.
    7. Alexandros Glentis & Philipp Oertle & Pascale Mariani & Aleksandra Chikina & Fatima El Marjou & Youmna Attieh & Francois Zaccarini & Marick Lae & Damarys Loew & Florent Dingli & Philemon Sirven & Mari, 2017. "Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eva Maria Wenzel & Nina Marie Pedersen & Liv Anker Elfmark & Ling Wang & Ingrid Kjos & Espen Stang & Lene Malerød & Andreas Brech & Harald Stenmark & Camilla Raiborg, 2024. "Intercellular transfer of cancer cell invasiveness via endosome-mediated protease shedding," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    2. Stefan Harmansa & Alexander Erlich & Christophe Eloy & Giuseppe Zurlo & Thomas Lecuit, 2023. "Growth anisotropy of the extracellular matrix shapes a developing organ," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Peng Shi & Xiaoyu Ren & Jie Meng & Chenlu Kang & Yihe Wu & Yingxue Rong & Shujuan Zhao & Zhaodi Jiang & Ling Liang & Wanzhong He & Yuxin Yin & Xiangdong Li & Yong Liu & Xiaoshuai Huang & Yujie Sun & B, 2022. "Mechanical instability generated by Myosin 19 contributes to mitochondria cristae architecture and OXPHOS," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Frederic Li Mow Chee & Bruno Beernaert & Billie G. C. Griffith & Alexander E. P. Loftus & Yatendra Kumar & Jimi C. Wills & Martin Lee & Jessica Valli & Ann P. Wheeler & J. Douglas Armstrong & Maddy Pa, 2023. "Mena regulates nesprin-2 to control actin–nuclear lamina associations, trans-nuclear membrane signalling and gene expression," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Heewon Cho & Haw-Young Kwon & Amit Sharma & Sun Hyeok Lee & Xiao Liu & Naoki Miyamoto & Jong-Jin Kim & Sin-Hyeog Im & Nam-Young Kang & Young-Tae Chang, 2022. "Visualizing inflammation with an M1 macrophage selective probe via GLUT1 as the gating target," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Woojin Choi & Utkarsh Mangal & Jae-Hun Yu & Jeong-Hyun Ryu & Ji‑Yeong Kim & Taesuk Jun & Yoojin Lee & Heesu Cho & Moonhyun Choi & Milae Lee & Du Yeol Ryu & Sang-Young Lee & Se Yong Jung & Jae-Kook Cha, 2024. "Viscoelastic and antimicrobial dental care bioplastic with recyclable life cycle," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Evangéline Despin-Guitard & Viviane S. Rosa & Steffen Plunder & Navrita Mathiah & Kristof Schoor & Eliana Nehme & Sara Merino-Aceituno & Joaquim Egea & Marta N. Shahbazi & Eric Theveneau & Isabelle Mi, 2024. "Non-apical mitoses contribute to cell delamination during mouse gastrulation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Shiman Zuo & Yuxin Wang & Hanjing Bao & Zehui Zhang & Nanfei Yang & Meng Jia & Qing Zhang & Ani Jian & Rong Ji & Lidan Zhang & Yan Lu & Yahong Huang & Pingping Shen, 2024. "Lipid synthesis, triggered by PPARγ T166 dephosphorylation, sustains reparative function of macrophages during tissue repair," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Chen Chen & Bongsoo Park & Emeline Ragonnaud & Monica Bodogai & Xin Wang & Le Zong & Jung-Min Lee & Isabel Beerman & Arya Biragyn, 2022. "Cancer co-opts differentiation of B-cell precursors into macrophage-like cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Xiaowei Gu & Anna Heinrich & Shu-Yun Li & Tony DeFalco, 2023. "Testicular macrophages are recruited during a narrow fetal time window and promote organ-specific developmental functions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Kai Cheng & Bo Liu & Xiao-Shuai Zhang & Ruo-Yun Zhang & Fang Zhang & Ghazal Ashraf & Guo-Qing Fan & Ming-Yu Tian & Xing Sun & Jing Yuan & Yuan-Di Zhao, 2022. "Biomimetic material degradation for synergistic enhanced therapy by regulating endogenous energy metabolism imaging under hypothermia," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Ariel C. Vonk & Xiaofan Zhao & Zheyu Pan & Megan L. Hudnall & Conrad G. Oakes & Gabriela A. Lopez & Sarah C. Hasel-Kolossa & Alexander W. C. Kuncz & Sasha B. Sengelmann & Darian J. Gamble & Thomas P. , 2023. "Single-cell analysis of lizard blastema fibroblasts reveals phagocyte-dependent activation of Hedgehog-responsive chondrogenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Karen L. Xu & Nikolas Caprio & Hooman Fallahi & Mohammad Dehghany & Matthew D. Davidson & Lorielle Laforest & Brian C. H. Cheung & Yuqi Zhang & Mingming Wu & Vivek Shenoy & Lin Han & Robert L. Mauck &, 2024. "Microinterfaces in biopolymer-based bicontinuous hydrogels guide rapid 3D cell migration," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Haruko Watanabe-Takano & Katsuhiro Kato & Eri Oguri-Nakamura & Tomohiro Ishii & Koji Kobayashi & Takahisa Murata & Koichiro Tsujikawa & Takaki Miyata & Yoshiaki Kubota & Yasuyuki Hanada & Koichi Nishi, 2024. "Endothelial cells regulate alveolar morphogenesis by constructing basement membranes acting as a scaffold for myofibroblasts," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    15. Fabian Gondorf & Afiat Berbudi & Benedikt C Buerfent & Jesuthas Ajendra & Dominique Bloemker & Sabine Specht & David Schmidt & Anna-Lena Neumann & Laura E Layland & Achim Hoerauf & Marc P Hübner, 2015. "Chronic Filarial Infection Provides Protection against Bacterial Sepsis by Functionally Reprogramming Macrophages," PLOS Pathogens, Public Library of Science, vol. 11(1), pages 1-27, January.
    16. Azahara María García-Serna & Elena Martín-Orozco & Trinidad Hernández-Caselles & Eva Morales, 2021. "Prenatal and Perinatal Environmental Influences Shaping the Neonatal Immune System: A Focus on Asthma and Allergy Origins," IJERPH, MDPI, vol. 18(8), pages 1-24, April.
    17. Pravin Kesarwani & Shiva Kant & Yi Zhao & Antony Prabhu & Katie L. Buelow & C. Ryan Miller & Prakash Chinnaiyan, 2023. "Quinolinate promotes macrophage-induced immune tolerance in glioblastoma through the NMDAR/PPARγ signaling axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Qizhou Lian & Kui Zhang & Zhao Zhang & Fuyu Duan & Liyan Guo & Weiren Luo & Bobo Wing-Yee Mok & Abhimanyu Thakur & Xiaoshan Ke & Pedram Motallebnejad & Vlad Nicolaescu & Jonathan Chen & Chui Yan Ma & , 2022. "Differential effects of macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Wenyan Xie & Qinghua Xue & Liangfei Niu & Ka-Wing Wong, 2020. "Zinc transporter SLC39A7 relieves zinc deficiency to suppress alternative macrophage activation and impairment of phagocytosis," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-12, July.
    20. Nicolas Denans & Nhung T. T. Tran & Madeleine E. Swall & Daniel C. Diaz & Jillian Blanck & Tatjana Piotrowski, 2022. "An anti-inflammatory activation sequence governs macrophage transcriptional dynamics during tissue injury in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34087-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.