IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v496y2013i7446d10.1038_nature12034.html
   My bibliography  Save this article

Macrophage biology in development, homeostasis and disease

Author

Listed:
  • Thomas A. Wynn

    (Immunopathogenesis Section, Program in Tissue Immunity and Repair and Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Ajay Chawla

    (Cardiovascular Research Institute, University of California San Francisco)

  • Jeffrey W. Pollard

    (Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh
    Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine)

Abstract

A discussion of progress in macrophage biology, examining their classification, diverse lineages, identities and regulation, their roles in regulating normal physiology and development, and their identification as therapeutic targets in human diseases.

Suggested Citation

  • Thomas A. Wynn & Ajay Chawla & Jeffrey W. Pollard, 2013. "Macrophage biology in development, homeostasis and disease," Nature, Nature, vol. 496(7446), pages 445-455, April.
  • Handle: RePEc:nat:nature:v:496:y:2013:i:7446:d:10.1038_nature12034
    DOI: 10.1038/nature12034
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature12034
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature12034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qizhou Lian & Kui Zhang & Zhao Zhang & Fuyu Duan & Liyan Guo & Weiren Luo & Bobo Wing-Yee Mok & Abhimanyu Thakur & Xiaoshan Ke & Pedram Motallebnejad & Vlad Nicolaescu & Jonathan Chen & Chui Yan Ma & , 2022. "Differential effects of macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Kai Cheng & Bo Liu & Xiao-Shuai Zhang & Ruo-Yun Zhang & Fang Zhang & Ghazal Ashraf & Guo-Qing Fan & Ming-Yu Tian & Xing Sun & Jing Yuan & Yuan-Di Zhao, 2022. "Biomimetic material degradation for synergistic enhanced therapy by regulating endogenous energy metabolism imaging under hypothermia," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Wenyan Xie & Qinghua Xue & Liangfei Niu & Ka-Wing Wong, 2020. "Zinc transporter SLC39A7 relieves zinc deficiency to suppress alternative macrophage activation and impairment of phagocytosis," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-12, July.
    4. Ariel C. Vonk & Xiaofan Zhao & Zheyu Pan & Megan L. Hudnall & Conrad G. Oakes & Gabriela A. Lopez & Sarah C. Hasel-Kolossa & Alexander W. C. Kuncz & Sasha B. Sengelmann & Darian J. Gamble & Thomas P. , 2023. "Single-cell analysis of lizard blastema fibroblasts reveals phagocyte-dependent activation of Hedgehog-responsive chondrogenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Nicolas Denans & Nhung T. T. Tran & Madeleine E. Swall & Daniel C. Diaz & Jillian Blanck & Tatjana Piotrowski, 2022. "An anti-inflammatory activation sequence governs macrophage transcriptional dynamics during tissue injury in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Michelle J Iandiorio & Jeanne M Fair & Stylianos Chatzipanagiotou & Anastasios Ioannidis & Eleftheria Trikka-Graphakos & Nikoletta Charalampaki & Christina Sereti & George P Tegos & Almira L Hoogestei, 2016. "Preventing Data Ambiguity in Infectious Diseases with Four-Dimensional and Personalized Evaluations," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-19, July.
    7. Heewon Cho & Haw-Young Kwon & Amit Sharma & Sun Hyeok Lee & Xiao Liu & Naoki Miyamoto & Jong-Jin Kim & Sin-Hyeog Im & Nam-Young Kang & Young-Tae Chang, 2022. "Visualizing inflammation with an M1 macrophage selective probe via GLUT1 as the gating target," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Shiman Zuo & Yuxin Wang & Hanjing Bao & Zehui Zhang & Nanfei Yang & Meng Jia & Qing Zhang & Ani Jian & Rong Ji & Lidan Zhang & Yan Lu & Yahong Huang & Pingping Shen, 2024. "Lipid synthesis, triggered by PPARγ T166 dephosphorylation, sustains reparative function of macrophages during tissue repair," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Gesham Magombedze & Shigetoshi Eda & Vitaly V Ganusov, 2014. "Competition for Antigen between Th1 and Th2 Responses Determines the Timing of the Immune Response Switch during Mycobaterium avium Subspecies paratuberulosis Infection in Ruminants," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-13, January.
    10. Julian C. Bahr & Xiao-Yan Li & Tamar Y. Feinberg & Long Jiang & Stephen J. Weiss, 2022. "Divergent regulation of basement membrane trafficking by human macrophages and cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    11. Fabian Gondorf & Afiat Berbudi & Benedikt C Buerfent & Jesuthas Ajendra & Dominique Bloemker & Sabine Specht & David Schmidt & Anna-Lena Neumann & Laura E Layland & Achim Hoerauf & Marc P Hübner, 2015. "Chronic Filarial Infection Provides Protection against Bacterial Sepsis by Functionally Reprogramming Macrophages," PLOS Pathogens, Public Library of Science, vol. 11(1), pages 1-27, January.
    12. Chen Chen & Bongsoo Park & Emeline Ragonnaud & Monica Bodogai & Xin Wang & Le Zong & Jung-Min Lee & Isabel Beerman & Arya Biragyn, 2022. "Cancer co-opts differentiation of B-cell precursors into macrophage-like cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Chandler D. Gatenbee & Ann-Marie Baker & Ryan O. Schenck & Maximilian Strobl & Jeffrey West & Margarida P. Neves & Sara Yakub Hasan & Eszter Lakatos & Pierre Martinez & William C. H. Cross & Marnix Ja, 2022. "Immunosuppressive niche engineering at the onset of human colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Azahara María García-Serna & Elena Martín-Orozco & Trinidad Hernández-Caselles & Eva Morales, 2021. "Prenatal and Perinatal Environmental Influences Shaping the Neonatal Immune System: A Focus on Asthma and Allergy Origins," IJERPH, MDPI, vol. 18(8), pages 1-24, April.
    15. Xiaowei Gu & Anna Heinrich & Shu-Yun Li & Tony DeFalco, 2023. "Testicular macrophages are recruited during a narrow fetal time window and promote organ-specific developmental functions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Pravin Kesarwani & Shiva Kant & Yi Zhao & Antony Prabhu & Katie L. Buelow & C. Ryan Miller & Prakash Chinnaiyan, 2023. "Quinolinate promotes macrophage-induced immune tolerance in glioblastoma through the NMDAR/PPARγ signaling axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:496:y:2013:i:7446:d:10.1038_nature12034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.