IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v190y2022ics0047259x22000082.html
   My bibliography  Save this article

Perturbation theory for cross data matrix-based PCA

Author

Listed:
  • Wang, Shao-Hsuan
  • Huang, Su-Yun

Abstract

Principal component analysis (PCA) has long been a useful and important tool for dimension reduction. However, this method must be used with care under certain circumstances such as high dimension and small sample size. In general, low dimension with large sample size or large signal to noise ratio is vital to guarantee the consistency of the leading eigenvalues and eigenvectors obtained by PCA. Cross data matrix (CDM)-based PCA is another way to estimate PCA components, through splitting data into two subsets and calculating singular value decomposition for the cross product of the corresponding covariance matrices. It has been shown that CDM-based PCA has a broader region of consistency than ordinary PCA for leading eigenvalues and eigenvectors. Although the difference in regions of consistency is well studied, an interesting practical as well as theoretical question is how they differ in eigenvalues and eigenvectors estimation, especially for the case where both fall in a common region of consistency. In this article, we derive the finite sample approximation results as well as the asymptotic behavior for CDM-based PCA via matrix perturbation. Furthermore, we also derive a comparison measure for CDM-based PCA vs. ordinary PCA. This measure only depends on the data dimension, noise correlations and the noise-to-signal ratio (NSR). Using this measure, we develop an algorithm, which selects good partitions and integrates results from these good partitions to form a final estimate for CDM-based PCA. Numerical and real data examples are presented for illustration.

Suggested Citation

  • Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:jmvana:v:190:y:2022:i:c:s0047259x22000082
    DOI: 10.1016/j.jmva.2022.104960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22000082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.104960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & J. S. Marron & Amnon Neeman, 2005. "Geometric representation of high dimension, low sample size data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 427-444, June.
    2. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    3. Wang, Shao-Hsuan & Huang, Su-Yun & Chen, Ting-Li, 2020. "On asymptotic normality of cross data matrix-based PCA in high dimension low sample size," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    4. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    5. Yata, Kazuyoshi & Aoshima, Makoto, 2012. "Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 193-215.
    6. Yata, Kazuyoshi & Aoshima, Makoto, 2010. "Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2060-2077, October.
    7. Jeongyoun Ahn & J. S. Marron & Keith M. Muller & Yueh-Yun Chi, 2007. "The high-dimension, low-sample-size geometric representation holds under mild conditions," Biometrika, Biometrika Trust, vol. 94(3), pages 760-766.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao He & Houkui Zhou & Caiyao Xu & Junguo Hu & Xingyu Xue & Liuchang Xu & Xiongwei Lou & Kai Zeng & Qun Wang, 2023. "Deep Learning in Forest Tree Species Classification Using Sentinel-2 on Google Earth Engine: A Case Study of Qingyuan County," Sustainability, MDPI, vol. 15(3), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    2. Wang, Shao-Hsuan & Huang, Su-Yun & Chen, Ting-Li, 2020. "On asymptotic normality of cross data matrix-based PCA in high dimension low sample size," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    3. Shen, Dan & Shen, Haipeng & Marron, J.S., 2013. "Consistency of sparse PCA in High Dimension, Low Sample Size contexts," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 317-333.
    4. Makoto Aoshima & Kazuyoshi Yata, 2014. "A distance-based, misclassification rate adjusted classifier for multiclass, high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 983-1010, October.
    5. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "Correlation tests for high-dimensional data using extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 313-331.
    6. Jung, Sungkyu & Sen, Arusharka & Marron, J.S., 2012. "Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 190-203.
    7. Borysov, Petro & Hannig, Jan & Marron, J.S., 2014. "Asymptotics of hierarchical clustering for growing dimension," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 465-479.
    8. Ishii, Aki & Yata, Kazuyoshi & Aoshima, Makoto, 2022. "Geometric classifiers for high-dimensional noisy data," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Nakayama, Yugo & Yata, Kazuyoshi & Aoshima, Makoto, 2021. "Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    10. Kazuyoshi Yata & Makoto Aoshima, 2020. "Geometric consistency of principal component scores for high‐dimensional mixture models and its application," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 899-921, September.
    11. Yata, Kazuyoshi & Aoshima, Makoto, 2012. "Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 193-215.
    12. Yata, Kazuyoshi & Aoshima, Makoto, 2010. "Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2060-2077, October.
    13. Kristoffer H. Hellton & Magne Thoresen, 2017. "When and Why are Principal Component Scores a Good Tool for Visualizing High-dimensional Data?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 581-597, September.
    14. Jonathan Gillard & Emily O’Riordan & Anatoly Zhigljavsky, 2023. "Polynomial whitening for high-dimensional data," Computational Statistics, Springer, vol. 38(3), pages 1427-1461, September.
    15. Makoto Aoshima & Kazuyoshi Yata, 2019. "Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 473-503, June.
    16. Kazuyoshi Yata & Makoto Aoshima, 2012. "Inference on High-Dimensional Mean Vectors with Fewer Observations Than the Dimension," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 459-476, September.
    17. Yugo Nakayama & Kazuyoshi Yata & Makoto Aoshima, 2020. "Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1257-1286, October.
    18. Chung, Hee Cheol & Ahn, Jeongyoun, 2021. "Subspace rotations for high-dimensional outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    19. Landgraf, Andrew J. & Lee, Yoonkyung, 2020. "Dimensionality reduction for binary data through the projection of natural parameters," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    20. Jun Li, 2018. "Asymptotic normality of interpoint distances for high-dimensional data with applications to the two-sample problem," Biometrika, Biometrika Trust, vol. 105(3), pages 529-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:190:y:2022:i:c:s0047259x22000082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.