IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18446-0.html
   My bibliography  Save this article

Age and life expectancy clocks based on machine learning analysis of mouse frailty

Author

Listed:
  • Michael B. Schultz

    (Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School)

  • Alice E. Kane

    (Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School
    The University of Sydney)

  • Sarah J. Mitchell

    (Harvard T.H. Chan School of Public Health)

  • Michael R. MacArthur

    (Harvard T.H. Chan School of Public Health)

  • Elisa Warner

    (University of Michigan)

  • David S. Vogel

    (Voloridge Investment Management, LLC and VoLo Foundation)

  • James R. Mitchell

    (Harvard T.H. Chan School of Public Health)

  • Susan E. Howlett

    (Dalhousie University)

  • Michael S. Bonkowski

    (Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School
    Northwestern University)

  • David A. Sinclair

    (Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School
    The University of New South Wales)

Abstract

The identification of genes and interventions that slow or reverse aging is hampered by the lack of non-invasive metrics that can predict the life expectancy of pre-clinical models. Frailty Indices (FIs) in mice are composite measures of health that are cost-effective and non-invasive, but whether they can accurately predict health and lifespan is not known. Here, mouse FIs are scored longitudinally until death and machine learning is employed to develop two clocks. A random forest regression is trained on FI components for chronological age to generate the FRIGHT (Frailty Inferred Geriatric Health Timeline) clock, a strong predictor of chronological age. A second model is trained on remaining lifespan to generate the AFRAID (Analysis of Frailty and Death) clock, which accurately predicts life expectancy and the efficacy of a lifespan-extending intervention up to a year in advance. Adoption of these clocks should accelerate the identification of longevity genes and aging interventions.

Suggested Citation

  • Michael B. Schultz & Alice E. Kane & Sarah J. Mitchell & Michael R. MacArthur & Elisa Warner & David S. Vogel & James R. Mitchell & Susan E. Howlett & Michael S. Bonkowski & David A. Sinclair, 2020. "Age and life expectancy clocks based on machine learning analysis of mouse frailty," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18446-0
    DOI: 10.1038/s41467-020-18446-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18446-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18446-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carolin Thomas & Reto Erni & Jia Yee Wu & Fabian Fischer & Greta Lamers & Giovanna Grigolon & Sarah J. Mitchell & Kim Zarse & Erick M. Carreira & Michael Ristow, 2023. "A naturally occurring polyacetylene isolated from carrots promotes health and delays signatures of aging," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Konstantin Avchaciov & Marina P. Antoch & Ekaterina L. Andrianova & Andrei E. Tarkhov & Leonid I. Menshikov & Olga Burmistrova & Andrei V. Gudkov & Peter O. Fedichev, 2022. "Unsupervised learning of aging principles from longitudinal data," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Cristal M. Hill & Diana C. Albarado & Lucia G. Coco & Redin A. Spann & Md Shahjalal Khan & Emily Qualls-Creekmore & David H. Burk & Susan J. Burke & J. Jason Collier & Sangho Yu & David H. McDougal & , 2022. "FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18446-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.