IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6364.html
   My bibliography  Save this article

The structure of apo-kinesin bound to tubulin links the nucleotide cycle to movement

Author

Listed:
  • Luyan Cao

    (Laboratoire d’Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, Centre National de la Recherche Scientifique)

  • Weiyi Wang

    (Laboratoire d’Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, Centre National de la Recherche Scientifique
    Institute of Protein Research, Tongji University)

  • Qiyang Jiang

    (Institute of Protein Research, Tongji University
    Present address: European Molecular Biology Laboratory Grenoble Outstation, 71 avenue des Martyrs, 38000 Grenoble, France)

  • Chunguang Wang

    (Institute of Protein Research, Tongji University)

  • Marcel Knossow

    (Laboratoire d’Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, Centre National de la Recherche Scientifique)

  • Benoît Gigant

    (Laboratoire d’Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, Centre National de la Recherche Scientifique)

Abstract

Kinesin-1 is a dimeric ATP-dependent motor protein that moves towards microtubules (+) ends. This movement is driven by two conformations (docked and undocked) of the two motor domains carboxy-terminal peptides (named neck linkers), in correlation with the nucleotide bound to each motor domain. Despite extensive data on kinesin-1, the structural connection between its nucleotide cycle and movement has remained elusive, mostly because the structure of the critical tubulin-bound apo-kinesin state was unknown. Here we report the 2.2 Å structure of this complex. From its comparison with detached kinesin–ADP and tubulin-bound kinesin–ATP, we identify three kinesin motor subdomains that move rigidly along the nucleotide cycle. Our data reveal how these subdomains reorient on binding to tubulin and when ATP binds, leading respectively to ADP release and to neck linker docking. These results establish a framework for understanding the transformation of chemical energy into mechanical work by (+) end-directed kinesins.

Suggested Citation

  • Luyan Cao & Weiyi Wang & Qiyang Jiang & Chunguang Wang & Marcel Knossow & Benoît Gigant, 2014. "The structure of apo-kinesin bound to tubulin links the nucleotide cycle to movement," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6364
    DOI: 10.1038/ncomms6364
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6364
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunting Zhang & Changmiao Guo & Ryan W. Russell & Caitlin M. Quinn & Mingyue Li & John C. Williams & Angela M. Gronenborn & Tatyana Polenova, 2022. "Magic-angle-spinning NMR structure of the kinesin-1 motor domain assembled with microtubules reveals the elusive neck linker orientation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Matthieu P. M. H. Benoit & Lu Rao & Ana B. Asenjo & Arne Gennerich & Hernando Sosa, 2024. "Cryo-EM unveils kinesin KIF1A’s processivity mechanism and the impact of its pathogenic variant P305L," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Byron Hunter & Matthieu P. M. H. Benoit & Ana B. Asenjo & Caitlin Doubleday & Daria Trofimova & Corey Frazer & Irsa Shoukat & Hernando Sosa & John S. Allingham, 2022. "Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Tianyang Liu & Fiona Shilliday & Alexander D. Cook & Mohammad Zeeshan & Declan Brady & Rita Tewari & Colin J. Sutherland & Anthony J. Roberts & Carolyn A. Moores, 2022. "Mechanochemical tuning of a kinesin motor essential for malaria parasite transmission," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.