IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v104y2017icp734-740.html
   My bibliography  Save this article

“Viral” Turing Machines, computation from noise and combinatorial hierarchies

Author

Listed:
  • Raptis, Theophanes E.

Abstract

The interactive computation paradigm is reviewed and a particular example is extended to form the stochastic analog of a computational process via a transcription of a minimal Turing Machine into an equivalent asynchronous Cellular Automaton with an exponential waiting times distribution of effective transitions. Furthermore, a special toolbox for analytic derivation of recursive relations of important statistical and other quantities is introduced in the form of an Inductive Combinatorial Hierarchy.

Suggested Citation

  • Raptis, Theophanes E., 2017. "“Viral” Turing Machines, computation from noise and combinatorial hierarchies," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 734-740.
  • Handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:734-740
    DOI: 10.1016/j.chaos.2017.09.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917304009
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.09.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grigolini, Paolo, 2015. "Emergence of biological complexity: Criticality, renewal and memory," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 575-588.
    2. Joe Howard & Anthony A. Hyman, 2003. "Dynamics and mechanics of the microtubule plus end," Nature, Nature, vol. 422(6933), pages 753-758, April.
    3. Stephen, Damian G. & Dixon, James A., 2011. "Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 160-168.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roume, C. & Almurad, Z.M.H. & Scotti, M. & Ezzina, S. & Blain, H. & Delignières, D., 2018. "Windowed detrended cross-correlation analysis of synchronization processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1131-1150.
    2. Ishutesh Jain & Mandar M Inamdar & Ranjith Padinhateeri, 2015. "Statistical Mechanics Provides Novel Insights into Microtubule Stability and Mechanism of Shrinkage," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
    3. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    4. Kelty-Stephen, Damian G., 2017. "Threading a multifractal social psychology through within-organism coordination to within-group interactions: A tale of coordination in three acts," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 363-370.
    5. Stephen, Damian G. & Hsu, Wen-Hao & Young, Diana & Saltzman, Elliot L. & Holt, Kenneth G. & Newman, Dava J. & Weinberg, Marc & Wood, Robert J. & Nagpal, Radhika & Goldfield, Eugene C., 2012. "Multifractal fluctuations in joint angles during infant spontaneous kicking reveal multiplicativity-driven coordination," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1201-1219.
    6. Jun Taek Lee & Damian G. Kelty-Stephen, 2017. "Cascade-Driven Series with Narrower Multifractal Spectra Than Their Surrogates: Standard Deviation of Multipliers Changes Interactions across Scales," Complexity, Hindawi, vol. 2017, pages 1-8, January.
    7. Yutaka Takeda & Takumi Chinen & Shunnosuke Honda & Sho Takatori & Shotaro Okuda & Shohei Yamamoto & Masamitsu Fukuyama & Koh Takeuchi & Taisuke Tomita & Shoji Hata & Daiju Kitagawa, 2024. "Molecular basis promoting centriole triplet microtubule assembly," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Aghababaei, Sajedeh & Balaraman, Sundarambal & Rajagopal, Karthikeyan & Parastesh, Fatemeh & Panahi, Shirin & Jafari, Sajad, 2021. "Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    9. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    10. Carbone, Anna & Jensen, Meiko & Sato, Aki-Hiro, 2016. "Challenges in data science: a complex systems perspective," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 1-7.
    11. Tjeerd V olde Scheper, 2022. "Controlled bio-inspired self-organised criticality," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-19, January.
    12. Scharf, Yael, 2017. "A chaotic outlook on biological systems," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 42-47.
    13. Kelty-Stephen, Damian G. & Mangalam, Madhur, 2024. "Additivity suppresses multifractal nonlinearity due to multiplicative cascade dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    14. Okano, Masahiro & Kurebayashi, Wataru & Shinya, Masahiro & Kudo, Kazutoshi, 2019. "Hybrid dynamics in a paired rhythmic synchronization–continuation task," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 625-638.
    15. Chunting Zhang & Changmiao Guo & Ryan W. Russell & Caitlin M. Quinn & Mingyue Li & John C. Williams & Angela M. Gronenborn & Tatyana Polenova, 2022. "Magic-angle-spinning NMR structure of the kinesin-1 motor domain assembled with microtubules reveals the elusive neck linker orientation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Iran R Roman & Auriel Washburn & Edward W Large & Chris Chafe & Takako Fujioka, 2019. "Delayed feedback embedded in perception-action coordination cycles results in anticipation behavior during synchronized rhythmic action: A dynamical systems approach," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-32, October.
    17. Mahmoodi, Korosh & West, Bruce J. & Grigolini, Paolo, 2020. "On the dynamical foundation of multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    18. Stanis{l}aw Dro.zd.z & Rafa{l} Kowalski & Pawe{l} O'swic{e}cimka & Rafa{l} Rak & Robert Gc{e}barowski, 2018. "Dynamical variety of shapes in financial multifractality," Papers 1809.06728, arXiv.org.
    19. Pease, April & Mahmoodi, Korosh & West, Bruce J., 2018. "Complexity measures of music," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 82-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:734-740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.