IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33264-2.html
   My bibliography  Save this article

Ambipolar blend-based organic electrochemical transistors and inverters

Author

Listed:
  • Eyal Stein

    (Technion – Israel Institute of Technology)

  • Oded Nahor

    (Technion – Israel Institute of Technology)

  • Mikhail Stolov

    (Technion – Israel Institute of Technology)

  • Viatcheslav Freger

    (Technion – Israel Institute of Technology)

  • Iuliana Maria Petruta

    (University of Oxford)

  • Iain McCulloch

    (University of Oxford
    King Abdullah University of Science and Technology (KAUST))

  • Gitti L. Frey

    (Technion – Israel Institute of Technology)

Abstract

CMOS-like circuits in bioelectronics translate biological to electronic signals using organic electrochemical transistors (OECTs) based on organic mixed ionic-electronic conductors (OMIECs). Ambipolar OECTs can reduce the complexity of circuit fabrication, and in bioelectronics have the major advantage of detecting both cations and anions in one device, which further expands the prospects for diagnosis and sensing. Ambipolar OMIECs however, are scarce, limited by intricate materials design and complex synthesis. Here we demonstrate that judicious selection of p- and n-type materials for blend-based OMIECs offers a simple and tunable approach for the fabrication of ambipolar OECTs and corresponding circuits. These OECTs show high transconductance and excellent stability over multiple alternating polarity cycles, with ON/OFF ratios exceeding 103 and high gains in corresponding inverters. This work presents a simple and versatile new paradigm for the fabrication of ambipolar OMIECs and circuits with little constraints on materials design and synthesis and numerous possibilities for tunability and optimization towards higher performing bioelectronic applications.

Suggested Citation

  • Eyal Stein & Oded Nahor & Mikhail Stolov & Viatcheslav Freger & Iuliana Maria Petruta & Iain McCulloch & Gitti L. Frey, 2022. "Ambipolar blend-based organic electrochemical transistors and inverters," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33264-2
    DOI: 10.1038/s41467-022-33264-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33264-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33264-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Giovannitti & Christian B. Nielsen & Dan-Tiberiu Sbircea & Sahika Inal & Mary Donahue & Muhammad R. Niazi & David A. Hanifi & Aram Amassian & George G. Malliaras & Jonathan Rivnay & Iain McC, 2016. "N-type organic electrochemical transistors with stability in water," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    2. Paolo Romele & Matteo Ghittorelli & Zsolt Miklós Kovács-Vajna & Fabrizio Torricelli, 2019. "Ion buffering and interface charge enable high performance electronics with organic electrochemical transistors," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Dion Khodagholy & Thomas Doublet & Pascale Quilichini & Moshe Gurfinkel & Pierre Leleux & Antoine Ghestem & Esma Ismailova & Thierry Hervé & Sébastien Sanaur & Christophe Bernard & George G. Malliaras, 2013. "In vivo recordings of brain activity using organic transistors," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sophie Griggs & Adam Marks & Dilara Meli & Gonzague Rebetez & Olivier Bardagot & Bryan D. Paulsen & Hu Chen & Karrie Weaver & Mohamad I. Nugraha & Emily A. Schafer & Joshua Tropp & Catherine M. Aitchi, 2022. "The effect of residual palladium on the performance of organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Matteo Cucchi & Anton Weissbach & Lukas M. Bongartz & Richard Kantelberg & Hsin Tseng & Hans Kleemann & Karl Leo, 2022. "Thermodynamics of organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Filippo Bonafè & Francesco Decataldo & Isabella Zironi & Daniel Remondini & Tobias Cramer & Beatrice Fraboni, 2022. "AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Lawrence Coles & Domenico Ventrella & Alejandro Carnicer-Lombarte & Alberto Elmi & Joe G. Troughton & Massimo Mariello & Salim El Hadwe & Ben J. Woodington & Maria L. Bacci & George G. Malliaras & Dam, 2024. "Origami-inspired soft fluidic actuation for minimally invasive large-area electrocorticography," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Padinhare Cholakkal Harikesh & Chi-Yuan Yang & Deyu Tu & Jennifer Y. Gerasimov & Abdul Manan Dar & Adam Armada-Moreira & Matteo Massetti & Renee Kroon & David Bliman & Roger Olsson & Eleni Stavrinidou, 2022. "Organic electrochemical neurons and synapses with ion mediated spiking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Youngseok Kim & Joost Kimpel & Alexander Giovannitti & Christian Müller, 2024. "Small signal analysis for the characterization of organic electrochemical transistors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Peiyun Li & Junwei Shi & Yuqiu Lei & Zhen Huang & Ting Lei, 2022. "Switching p-type to high-performance n-type organic electrochemical transistors via doped state engineering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Shuai Chen & Zhongliang Zhou & Kunqi Hou & Xihu Wu & Qiang He & Cindy G. Tang & Ting Li & Xiujuan Zhang & Jiansheng Jie & Zhiyi Gao & Nripan Mathews & Wei Lin Leong, 2024. "Artificial organic afferent nerves enable closed-loop tactile feedback for intelligent robot," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Pietro Belleri & Judith Pons i Tarrés & Iain McCulloch & Paul W. M. Blom & Zsolt M. Kovács-Vajna & Paschalis Gkoupidenis & Fabrizio Torricelli, 2024. "Unravelling the operation of organic artificial neurons for neuromorphic bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Xudong Ji & Xuanyi Lin & Jonathan Rivnay, 2023. "Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33264-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.