IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13066.html
   My bibliography  Save this article

N-type organic electrochemical transistors with stability in water

Author

Listed:
  • Alexander Giovannitti

    (Imperial College London)

  • Christian B. Nielsen

    (Imperial College London
    Materials Research Institute and School of Biological and Chemical Sciences, Queen Mary University of London)

  • Dan-Tiberiu Sbircea

    (Imperial College London)

  • Sahika Inal

    (École Nationale Supérieure des Mines, CMP-EMSE, MOC)

  • Mary Donahue

    (École Nationale Supérieure des Mines, CMP-EMSE, MOC)

  • Muhammad R. Niazi

    (King Abdullah University of Science and Technology, SPERC)

  • David A. Hanifi

    (Stanford University)

  • Aram Amassian

    (King Abdullah University of Science and Technology, SPERC)

  • George G. Malliaras

    (École Nationale Supérieure des Mines, CMP-EMSE, MOC)

  • Jonathan Rivnay

    (École Nationale Supérieure des Mines, CMP-EMSE, MOC
    Palo Alto Research Center)

  • Iain McCulloch

    (Imperial College London
    King Abdullah University of Science and Technology, SPERC)

Abstract

Organic electrochemical transistors (OECTs) are receiving significant attention due to their ability to efficiently transduce biological signals. A major limitation of this technology is that only p-type materials have been reported, which precludes the development of complementary circuits, and limits sensor technologies. Here, we report the first ever n-type OECT, with relatively balanced ambipolar charge transport characteristics based on a polymer that supports both hole and electron transport along its backbone when doped through an aqueous electrolyte and in the presence of oxygen. This new semiconducting polymer is designed specifically to facilitate ion transport and promote electrochemical doping. Stability measurements in water show no degradation when tested for 2 h under continuous cycling. This demonstration opens the possibility to develop complementary circuits based on OECTs and to improve the sophistication of bioelectronic devices.

Suggested Citation

  • Alexander Giovannitti & Christian B. Nielsen & Dan-Tiberiu Sbircea & Sahika Inal & Mary Donahue & Muhammad R. Niazi & David A. Hanifi & Aram Amassian & George G. Malliaras & Jonathan Rivnay & Iain McC, 2016. "N-type organic electrochemical transistors with stability in water," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13066
    DOI: 10.1038/ncomms13066
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13066
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eyal Stein & Oded Nahor & Mikhail Stolov & Viatcheslav Freger & Iuliana Maria Petruta & Iain McCulloch & Gitti L. Frey, 2022. "Ambipolar blend-based organic electrochemical transistors and inverters," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Sophie Griggs & Adam Marks & Dilara Meli & Gonzague Rebetez & Olivier Bardagot & Bryan D. Paulsen & Hu Chen & Karrie Weaver & Mohamad I. Nugraha & Emily A. Schafer & Joshua Tropp & Catherine M. Aitchi, 2022. "The effect of residual palladium on the performance of organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Peiyun Li & Junwei Shi & Yuqiu Lei & Zhen Huang & Ting Lei, 2022. "Switching p-type to high-performance n-type organic electrochemical transistors via doped state engineering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.