IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51976-5.html
   My bibliography  Save this article

Engineering active and robust alloy-based electrocatalyst by rapid Joule-heating toward ampere-level hydrogen evolution

Author

Listed:
  • Zhan Zhao

    (Ocean University of China)

  • Jianpeng Sun

    (Ocean University of China)

  • Xiang Li

    (Ocean University of China)

  • Shiyu Qin

    (Ocean University of China)

  • Chunhu Li

    (Ocean University of China)

  • Zisheng Zhang

    (University of Ottawa)

  • Zizhen Li

    (Ocean University of China)

  • Xiangchao Meng

    (Ocean University of China)

Abstract

Rational design of bimetallic alloy is an effective way to improve the electrocatalytic activity and stability of Mo-based cathode for ampere-level hydrogen evolution. However, it is still critical to realise desirable syntheses due to the wide reduction potentials between different metal elements and uncontrollable nucleation processes. Herein, we propose a rapid Joule heating method to effectively load RuMo alloy onto MoOx matrix. As-prepared catalyst exhibits excellent stability (2000 h @ 1000 mA cm−2) and ultralow overpotential (9 mV, 18 mV and 15 mV in 1 M KOH, 1 M PBS, 0.5 M H2SO4 solution, respectively) at 10 mA cm−2. Based on first-principle simulations and operando measurements, the impressive electrocatalytic stability and activity are investigated. And the role of rapid Joule heating method is highlighted and discussed in details. This study showcases rapid Joule heating as a feasible strategy to construct highly efficient alloy-based electrocatalysts.

Suggested Citation

  • Zhan Zhao & Jianpeng Sun & Xiang Li & Shiyu Qin & Chunhu Li & Zisheng Zhang & Zizhen Li & Xiangchao Meng, 2024. "Engineering active and robust alloy-based electrocatalyst by rapid Joule-heating toward ampere-level hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51976-5
    DOI: 10.1038/s41467-024-51976-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51976-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51976-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lingxi Zhou & Yangfan Shao & Fang Yin & Jia Li & Feiyu Kang & Ruitao Lv, 2023. "Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Panlong Zhai & Yanxue Zhang & Yunzhen Wu & Junfeng Gao & Bo Zhang & Shuyan Cao & Yanting Zhang & Zhuwei Li & Licheng Sun & Jungang Hou, 2020. "Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Fengbo Yu & Chao Jia & Xuan Wu & Liming Sun & Zhijian Shi & Tao Teng & Litao Lin & Zhelin He & Jie Gao & Shicheng Zhang & Liang Wang & Shaobin Wang & Xiangdong Zhu, 2023. "Rapid self-heating synthesis of Fe-based nanomaterial catalyst for advanced oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Chenyu Li & Zhijie Wang & Mingda Liu & Enze Wang & Bolun Wang & Longlong Xu & Kaili Jiang & Shoushan Fan & Yinghui Sun & Jia Li & Kai Liu, 2022. "Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Dongshuang Wu & Kohei Kusada & Satoru Yoshioka & Tomokazu Yamamoto & Takaaki Toriyama & Syo Matsumura & Yanna Chen & Okkyun Seo & Jaemyung Kim & Chulho Song & Satoshi Hiroi & Osami Sakata & Toshiaki I, 2021. "Efficient overall water splitting in acid with anisotropic metal nanosheets," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Jiadong Chen & Chunhong Chen & Minkai Qin & Ben Li & Binbin Lin & Qing Mao & Hongbin Yang & Bin Liu & Yong Wang, 2022. "Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Jiayuan Li & Jun Hu & Mingkai Zhang & Wangyan Gou & Sai Zhang & Zhong Chen & Yongquan Qu & Yuanyuan Ma, 2021. "A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Jian Zhang & Tao Wang & Pan Liu & Zhongquan Liao & Shaohua Liu & Xiaodong Zhuang & Mingwei Chen & Ehrenfried Zschech & Xinliang Feng, 2017. "Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng Zhao & Sung-Fu Hung & Liming Deng & Wen-Jing Zeng & Tian Xiao & Shaoxiong Li & Chun-Han Kuo & Han-Yi Chen & Feng Hu & Shengjie Peng, 2024. "Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanoparticles for enhanced pH-universal water splitting," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Zhi Wen Chen & Jian Li & Pengfei Ou & Jianan Erick Huang & Zi Wen & LiXin Chen & Xue Yao & GuangMing Cai & Chun Cheng Yang & Chandra Veer Singh & Qing Jiang, 2024. "Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yaoda Liu & Lei Li & Li Wang & Na Li & Xiaoxu Zhao & Ya Chen & Thangavel Sakthivel & Zhengfei Dai, 2024. "Janus electronic state of supported iridium nanoclusters for sustainable alkaline water electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Zhenglong Fan & Fan Liao & Yujin Ji & Yang Liu & Hui Huang & Dan Wang & Kui Yin & Haiwei Yang & Mengjie Ma & Wenxiang Zhu & Meng Wang & Zhenhui Kang & Youyong Li & Mingwang Shao & Zhiwei Hu & Qi Shao, 2022. "Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Kang, Zhenye & Yang, Gaoqiang & Mo, Jingke, 2024. "Development of an ultra-thin electrode for the oxygen evolution reaction in proton exchange membrane water electrolyzers," Renewable Energy, Elsevier, vol. 224(C).
    7. Rachela G. Milazzo & Stefania M. S. Privitera & Silvia Scalese & Salvatore A. Lombardo, 2019. "Effect of Morphology and Mechanical Stability of Nanometric Platinum Layer on Nickel Foam for Hydrogen Evolution Reaction," Energies, MDPI, vol. 12(16), pages 1-11, August.
    8. Jinqi Xiong & Shanjun Mao & Qian Luo & Honghui Ning & Bing Lu & Yanling Liu & Yong Wang, 2024. "Mediating trade-off between activity and selectivity in alkynes semi-hydrogenation via a hydrophilic polar layer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Qianqian Tang & Bangxiang Wu & Xiaowen Huang & Wei Ren & Lingling Liu & Lei Tian & Ying Chen & Long-Shuai Zhang & Qing Sun & Zhibing Kang & Tianyi Ma & Jian-Ping Zou, 2024. "Electron transfer mediated activation of periodate by contaminants to generate 1O2 by charge-confined single-atom catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Jia Zhao & Ricardo Urrego-Ortiz & Nan Liao & Federico Calle-Vallejo & Jingshan Luo, 2024. "Rationally designed Ru catalysts supported on TiN for highly efficient and stable hydrogen evolution in alkaline conditions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Zhigang Chen & Wenbin Gong & Juan Wang & Shuang Hou & Guang Yang & Chengfeng Zhu & Xiyue Fan & Yifan Li & Rui Gao & Yi Cui, 2023. "Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Chenhui Zhou & Lu Li & Zhaoqi Dong & Fan Lv & Hongyu Guo & Kai Wang & Menggang Li & Zhengyi Qian & Na Ye & Zheng Lin & Mingchuan Luo & Shaojun Guo, 2024. "Pinning effect of lattice Pb suppressing lattice oxygen reactivity of Pb-RuO2 enables stable industrial-level electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Cong Zhao & Jiazheng Diao & Zhao Liu & Jie Hao & Suhang He & Shaojia Li & Xingxing Li & Guangwu Li & Qiang Fu & Chuancheng Jia & Xuefeng Guo, 2024. "Electrical monitoring of single-event protonation dynamics at the solid-liquid interface and its regulation by external mechanical forces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Peimiao Zou & Dinu Iuga & Sanliang Ling & Alex J. Brown & Shigang Chen & Mengfei Zhang & Yisong Han & A. Dominic Fortes & Christopher M. Howard & Shanwen Tao, 2024. "A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    16. Yang Hu & Yao Zheng & Jing Jin & Yantao Wang & Yong Peng & Jie Yin & Wei Shen & Yichao Hou & Liu Zhu & Li An & Min Lu & Pinxian Xi & Chun-Hua Yan, 2023. "Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Haifeng Shen & Huanyu Jin & Haobo Li & Herui Wang & Jingjing Duan & Yan Jiao & Shi-Zhang Qiao, 2023. "Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Liu, Haobo & Zhang, Yuqi & Ge, Riyue & Cairney, Julie M. & Zheng, Rongkun & Khan, Aslam & Li, Sean & Liu, Bin & Dai, Liming & Li, Wenxian, 2023. "Tailoring the electronic structure of Ni5P4/Ni2P catalyst by Co2P for efficient overall water electrolysis," Applied Energy, Elsevier, vol. 349(C).
    19. Veeramani, Krishnan & Janani, Gnanaprakasam & Kim, Joonyoung & Surendran, Subramani & Lim, Jaehyoung & Jesudass, Sebastian Cyril & Mahadik, Shivraj & lee, Hyunjung & Kim, Tae-Hoon & Kim, Jung Kyu & Si, 2023. "Hydrogen and value-added products yield from hybrid water electrolysis: A critical review on recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    20. Lingxi Zhou & Yangfan Shao & Fang Yin & Jia Li & Feiyu Kang & Ruitao Lv, 2023. "Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51976-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.