IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32768-1.html
   My bibliography  Save this article

Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production

Author

Listed:
  • Ruirui Song

    (Tohoku University
    Tohoku University)

  • Jiuhui Han

    (Tohoku University
    Tohoku University
    Tianjin University of Technology)

  • Masayuki Okugawa

    (Osaka University
    AIST)

  • Rodion Belosludov

    (Tohoku University)

  • Takeshi Wada

    (Tohoku University)

  • Jing Jiang

    (Tohoku University)

  • Daixiu Wei

    (Tohoku University)

  • Akira Kudo

    (Tohoku University)

  • Yuan Tian

    (Johns Hopkins University)

  • Mingwei Chen

    (Johns Hopkins University)

  • Hidemi Kato

    (Tohoku University)

Abstract

Intermetallic compounds formed from non-precious transition metals are promising cost-effective and robust catalysts for electrochemical hydrogen production. However, the development of monolithic nanoporous intermetallics, with ample active sites and sufficient electrocatalytic activity, remains a challenge. Here we report the fabrication of nanoporous Co7Mo6 and Fe7Mo6 intermetallic compounds via liquid metal dealloying. Along with the development of three-dimensional bicontinuous open porosity, high-temperature dealloying overcomes the kinetic energy barrier, enabling the direct formation of chemically ordered intermetallic phases. Unprecedented small characteristic lengths are observed for the nanoporous intermetallic compounds, resulting from an intermetallic effect whereby the chemical ordering during nanopore formation lowers surface diffusivity and significantly suppresses the thermal coarsening of dealloyed nanostructure. The resulting ultrafine nanoporous Co7Mo6 exhibits high catalytic activity and durability in electrochemical hydrogen evolution reactions. This study sheds light on the previously unexplored intermetallic effect in dealloying and facilitates the development of advanced intermetallic catalysts for energy applications.

Suggested Citation

  • Ruirui Song & Jiuhui Han & Masayuki Okugawa & Rodion Belosludov & Takeshi Wada & Jing Jiang & Daixiu Wei & Akira Kudo & Yuan Tian & Mingwei Chen & Hidemi Kato, 2022. "Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32768-1
    DOI: 10.1038/s41467-022-32768-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32768-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32768-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hang Shi & Yi-Tong Zhou & Rui-Qi Yao & Wu-Bin Wan & Xin Ge & Wei Zhang & Zi Wen & Xing-You Lang & Wei-Tao Zheng & Qing Jiang, 2020. "Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Zhen Lu & Cheng Li & Jiuhui Han & Fan Zhang & Pan Liu & Hao Wang & Zhili Wang & Chun Cheng & Linghan Chen & Akihiko Hirata & Takeshi Fujita & Jonah Erlebacher & Mingwei Chen, 2018. "Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. Xiaohui He & Qian He & Yuchen Deng & Mi Peng & Hongyu Chen & Ying Zhang & Siyu Yao & Mengtao Zhang & Dequan Xiao & Ding Ma & Binghui Ge & Hongbing Ji, 2019. "A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Jakob Kibsgaard & Ib Chorkendorff, 2019. "Considerations for the scaling-up of water splitting catalysts," Nature Energy, Nature, vol. 4(6), pages 430-433, June.
    5. Jonah Erlebacher & Michael J. Aziz & Alain Karma & Nikolay Dimitrov & Karl Sieradzki, 2001. "Evolution of nanoporosity in dealloying," Nature, Nature, vol. 410(6827), pages 450-453, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Li & Hong Li & Hefei Fan & Qianfeng Liu & Zhao Yan & Aiqin Wang & Bing Yang & Erdong Wang, 2024. "Engineering interfacial sulfur migration in transition-metal sulfide enables low overpotential for durable hydrogen evolution in seawater," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu-Pei Zeng & Hang Shi & Tian-Yi Dai & Yang Liu & Zi Wen & Gao-Feng Han & Tong-Hui Wang & Wei Zhang & Xing-You Lang & Wei-Tao Zheng & Qing Jiang, 2023. "Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Longhai Lai & Bernard Gaskey & Alyssa Chuang & Jonah Erlebacher & Alain Karma, 2022. "Topological control of liquid-metal-dealloyed structures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Xiaohui He & Hao Zhang & Xingcong Zhang & Ying Zhang & Qian He & Hongyu Chen & Yujie Cheng & Mi Peng & Xuetao Qin & Hongbing Ji & Ding Ma, 2022. "Building up libraries and production line for single atom catalysts with precursor-atomization strategy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Yuannan Wang & Mingcheng Zhang & Zhenye Kang & Lei Shi & Yucheng Shen & Boyuan Tian & Yongcun Zou & Hui Chen & Xiaoxin Zou, 2023. "Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Shi, Tong & Feng, Hao & Liu, Dong & Zhang, Ying & Li, Qiang, 2022. "High-performance microfluidic electrochemical reactor for efficient hydrogen evolution," Applied Energy, Elsevier, vol. 325(C).
    7. Huanyu Jin & Xinyan Liu & Pengfei An & Cheng Tang & Huimin Yu & Qinghua Zhang & Hong-Jie Peng & Lin Gu & Yao Zheng & Taeseup Song & Kenneth Davey & Ungyu Paik & Juncai Dong & Shi-Zhang Qiao, 2023. "Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Huai Chen & Yangyang Xiong & Jun Li & Jehad Abed & Da Wang & Adrián Pedrazo-Tardajos & Yueping Cao & Yiting Zhang & Ying Wang & Mohsen Shakouri & Qunfeng Xiao & Yongfeng Hu & Sara Bals & Edward H. Sar, 2023. "Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Jialun Gu & Lanxi Li & Youneng Xie & Bo Chen & Fubo Tian & Yanju Wang & Jing Zhong & Junda Shen & Jian Lu, 2023. "Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Dae Jong You & Do-Hyung Kim & Ji Man Kim & Chanho Pak, 2019. "Preparation of Nanoporous PdIrZn Alloy Catalyst by Dissolving Excess ZnO for Cathode of High- Temperature Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 12(21), pages 1-11, October.
    11. Changhao Liu & Ningsi Zhang & Yang Li & Rongli Fan & Wenjing Wang & Jianyong Feng & Chen Liu & Jiaou Wang & Weichang Hao & Zhaosheng Li & Zhigang Zou, 2023. "Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Lihaokun Chen & Qiucheng Xu & Sebastian Z. Oener & Kevin Fabrizio & Shannon W. Boettcher, 2022. "Design principles for water dissociation catalysts in high-performance bipolar membranes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Hu, Bo & Xu, Lianfei & Li, Yang & Sun, Fei & Wang, Zhuozhi & Yang, Mengchi & Zhang, Yangyang & Kong, Wenwen & Shen, Boxiong & Wang, Xin & Yang, Jiancheng, 2024. "Biochar and Fe2+ mediation in hydrogen production by water electrolysis: Effects of physicochemical properties of biochars," Energy, Elsevier, vol. 297(C).
    14. Jingyi Yang & Yike Huang & Haifeng Qi & Chaobin Zeng & Qike Jiang & Yitao Cui & Yang Su & Xiaorui Du & Xiaoli Pan & Xiaoyan Liu & Weizhen Li & Botao Qiao & Aiqin Wang & Tao Zhang, 2022. "Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Pao-Wen Shao & Yi-Xian Wu & Wei-Han Chen & Mojue Zhang & Minyi Dai & Yen-Chien Kuo & Shang-Hsien Hsieh & Yi-Cheng Tang & Po-Liang Liu & Pu Yu & Yuang Chen & Rong Huang & Chia-Hao Chen & Ju-Hung Hsu & , 2023. "Bicontinuous oxide heteroepitaxy with enhanced photoconductivity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Shouwei Zuo & Zhi-Peng Wu & Deting Xu & Rafia Ahmad & Lirong Zheng & Jing Zhang & Lina Zhao & Wenhuan Huang & Hassan Al Qahtani & Yu Han & Luigi Cavallo & Huabin Zhang, 2024. "Local compressive strain-induced anti-corrosion over isolated Ru-decorated Co3O4 for efficient acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. López-Fernández, E. & Gómez-Sacedón, C. & Gil-Rostra, J. & Espinós, J.P. & Brey, J. Javier & González-Elipe, A.R. & de Lucas-Consuegra, A. & Yubero, F., 2022. "Optimization of anion exchange membrane water electrolyzers using ionomer-free electrodes," Renewable Energy, Elsevier, vol. 197(C), pages 1183-1191.
    18. Dafeng Zhang & Mengnan Li & Xue Yong & Haoqiang Song & Geoffrey I. N. Waterhouse & Yunfei Yi & Bingjie Xue & Dongliang Zhang & Baozhong Liu & Siyu Lu, 2023. "Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Xin Geng & Miquel Vega-Paredes & Zhenyu Wang & Colin Ophus & Pengfei Lu & Yan Ma & Siyuan Zhang & Christina Scheu & Christian H. Liebscher & Baptiste Gault, 2024. "Grain boundary engineering for efficient and durable electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32768-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.