IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11619-6.html
   My bibliography  Save this article

A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation

Author

Listed:
  • Xiaohui He

    (Sun Yat-sen University)

  • Qian He

    (Sun Yat-sen University)

  • Yuchen Deng

    (Peking University)

  • Mi Peng

    (Peking University)

  • Hongyu Chen

    (Sun Yat-sen University)

  • Ying Zhang

    (Sun Yat-sen University)

  • Siyu Yao

    (Peking University)

  • Mengtao Zhang

    (Peking University)

  • Dequan Xiao

    (University of New Haven)

  • Ding Ma

    (Peking University)

  • Binghui Ge

    (Institute of Physics, Chinese Academy of Sciences
    Anhui University)

  • Hongbing Ji

    (Sun Yat-sen University
    Guangdong University of Petrochemical Technology)

Abstract

Preparation of single atom catalysts (SACs) is of broad interest to materials scientists and chemists but remains a formidable challenge. Herein, we develop an efficient approach to synthesize SACs via a precursor-dilution strategy, in which metalloporphyrin (MTPP) with target metals are co-polymerized with diluents (tetraphenylporphyrin, TPP), followed by pyrolysis to N-doped porous carbon supported SACs (M1/N-C). Twenty-four different SACs, including noble metals and non-noble metals, are successfully prepared. In addition, the synthesis of a series of catalysts with different surface atom densities, bi-metallic sites, and metal aggregation states are achieved. This approach shows remarkable adjustability and generality, providing sufficient freedom to design catalysts at atomic-scale and explore the unique catalytic properties of SACs. As an example, we show that the prepared Pt1/N-C exhibits superior chemoselectivity and regioselectivity in hydrogenation. It only converts terminal alkynes to alkenes while keeping other reducible functional groups such as alkenyl, nitro group, and even internal alkyne intact.

Suggested Citation

  • Xiaohui He & Qian He & Yuchen Deng & Mi Peng & Hongyu Chen & Ying Zhang & Siyu Yao & Mengtao Zhang & Dequan Xiao & Ding Ma & Binghui Ge & Hongbing Ji, 2019. "A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11619-6
    DOI: 10.1038/s41467-019-11619-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11619-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11619-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohui He & Hao Zhang & Xingcong Zhang & Ying Zhang & Qian He & Hongyu Chen & Yujie Cheng & Mi Peng & Xuetao Qin & Hongbing Ji & Ding Ma, 2022. "Building up libraries and production line for single atom catalysts with precursor-atomization strategy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jingyi Yang & Yike Huang & Haifeng Qi & Chaobin Zeng & Qike Jiang & Yitao Cui & Yang Su & Xiaorui Du & Xiaoli Pan & Xiaoyan Liu & Weizhen Li & Botao Qiao & Aiqin Wang & Tao Zhang, 2022. "Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Ruirui Song & Jiuhui Han & Masayuki Okugawa & Rodion Belosludov & Takeshi Wada & Jing Jiang & Daixiu Wei & Akira Kudo & Yuan Tian & Mingwei Chen & Hidemi Kato, 2022. "Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Huai Chen & Yangyang Xiong & Jun Li & Jehad Abed & Da Wang & Adrián Pedrazo-Tardajos & Yueping Cao & Yiting Zhang & Ying Wang & Mohsen Shakouri & Qunfeng Xiao & Yongfeng Hu & Sara Bals & Edward H. Sar, 2023. "Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Xu Han & Tianyu Zhang & Xinhe Wang & Zedong Zhang & Yaping Li & Yongji Qin & Bingqing Wang & Aijuan Han & Junfeng Liu, 2022. "Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11619-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.