IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32022-8.html
   My bibliography  Save this article

Distinctive roles of translesion polymerases DinB1 and DnaE2 in diversification of the mycobacterial genome through substitution and frameshift mutagenesis

Author

Listed:
  • Pierre Dupuy

    (Sloan Kettering Institute)

  • Shreya Ghosh

    (Sloan-Kettering Institute)

  • Oyindamola Adefisayo

    (Sloan Kettering Institute
    Weill Cornell Graduate School)

  • John Buglino

    (Sloan Kettering Institute)

  • Stewart Shuman

    (Sloan-Kettering Institute)

  • Michael S. Glickman

    (Sloan Kettering Institute
    Weill Cornell Graduate School)

Abstract

Antibiotic resistance of Mycobacterium tuberculosis is exclusively a consequence of chromosomal mutations. Translesion synthesis (TLS) is a widely conserved mechanism of DNA damage tolerance and mutagenesis, executed by translesion polymerases such as DinBs. In mycobacteria, DnaE2 is the only known agent of TLS and the role of DinB polymerases is unknown. Here we demonstrate that, when overexpressed, DinB1 promotes missense mutations conferring resistance to rifampicin, with a mutational signature distinct from that of DnaE2, and abets insertion and deletion frameshift mutagenesis in homo-oligonucleotide runs. DinB1 is the primary mediator of spontaneous −1 frameshift mutations in homo-oligonucleotide runs whereas DnaE2 and DinBs are redundant in DNA damage-induced −1 frameshift mutagenesis. These results highlight DinB1 and DnaE2 as drivers of mycobacterial genome diversification with relevance to antimicrobial resistance and host adaptation.

Suggested Citation

  • Pierre Dupuy & Shreya Ghosh & Oyindamola Adefisayo & John Buglino & Stewart Shuman & Michael S. Glickman, 2022. "Distinctive roles of translesion polymerases DinB1 and DnaE2 in diversification of the mycobacterial genome through substitution and frameshift mutagenesis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32022-8
    DOI: 10.1038/s41467-022-32022-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32022-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32022-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katy Poncin & Agnès Roba & Ravikumar Jimmidi & Georges Potemberg & Antonella Fioravanti & Nayla Francis & Kévin Willemart & Nicolas Zeippen & Arnaud Machelart & Emanuele G. Biondi & Eric Muraille & St, 2019. "Occurrence and repair of alkylating stress in the intracellular pathogen Brucella abortus," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. S. T. Cole & R. Brosch & J. Parkhill & T. Garnier & C. Churcher & D. Harris & S. V. Gordon & K. Eiglmeier & S. Gas & C. E. Barry & F. Tekaia & K. Badcock & D. Basham & D. Brown & T. Chillingworth & R., 1998. "Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence," Nature, Nature, vol. 393(6685), pages 537-544, June.
    3. Aditi Gupta & David Alland, 2021. "Reversible gene silencing through frameshift indels and frameshift scars provide adaptive plasticity for Mycobacterium tuberculosis," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Giovanni Maga & Giuseppe Villani & Emmanuele Crespan & Ursula Wimmer & Elena Ferrari & Barbara Bertocci & Ulrich Hübscher, 2007. "8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins," Nature, Nature, vol. 447(7144), pages 606-608, May.
    5. S. T. Cole & R. Brosch & J. Parkhill & T. Garnier & C. Churcher & D. Harris & S. V. Gordon & K. Eiglmeier & S. Gas & C. E. Barry & F. Tekaia & K. Badcock & D. Basham & D. Brown & T. Chillingworth & R., 1998. "Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence," Nature, Nature, vol. 396(6707), pages 190-190, November.
    6. Daniel F. Jarosz & Veronica G. Godoy & James C. Delaney & John M. Essigmann & Graham C. Walker, 2006. "A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates," Nature, Nature, vol. 439(7073), pages 225-228, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Campos-Pardos & Santiago Uranga & Ana Picó & Ana Belén Gómez & Jesús Gonzalo-Asensio, 2024. "Dependency on host vitamin B12 has shaped Mycobacterium tuberculosis Complex evolution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Michiko Shimokawa & Akihiro Ishiwata & Toma Kashima & Chiho Nakashima & Jiaman Li & Riku Fukushima & Naomi Sawai & Miku Nakamori & Yuuki Tanaka & Azusa Kudo & Sae Morikami & Nao Iwanaga & Genki Akai &, 2023. "Identification and characterization of endo-α-, exo-α-, and exo-β-d-arabinofuranosidases degrading lipoarabinomannan and arabinogalactan of mycobacteria," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Tannu Priya Gosain & Saurabh Chugh & Zaigham Abbas Rizvi & Neeraj Kumar Chauhan & Saqib Kidwai & Krishan Gopal Thakur & Amit Awasthi & Ramandeep Singh, 2024. "Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Matthias F. Block & Cyrille L. Delley & Lena M. L. Keller & Timo T. Stuehlinger & Eilika Weber-Ban, 2023. "Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Cheng Bei & Junhao Zhu & Peter H. Culviner & Mingyu Gan & Eric J. Rubin & Sarah M. Fortune & Qian Gao & Qingyun Liu, 2024. "Genetically encoded transcriptional plasticity underlies stress adaptation in Mycobacterium tuberculosis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Iñaki Comas & Sebastien Gagneux, 2009. "The Past and Future of Tuberculosis Research," PLOS Pathogens, Public Library of Science, vol. 5(10), pages 1-7, October.
    7. Yuzhe Weng & Dawn Shepherd & Yi Liu & Nitya Krishnan & Brian D. Robertson & Nick Platt & Gerald Larrouy-Maumus & Frances M. Platt, 2022. "Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Tiago Beites & Robert S. Jansen & Ruojun Wang & Adrian Jinich & Kyu Y. Rhee & Dirk Schnappinger & Sabine Ehrt, 2021. "Multiple acyl-CoA dehydrogenase deficiency kills Mycobacterium tuberculosis in vitro and during infection," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Poonam Chitale & Alexander D. Lemenze & Emily C. Fogarty & Avi Shah & Courtney Grady & Aubrey R. Odom-Mabey & W. Evan Johnson & Jason H. Yang & A. Murat Eren & Roland Brosch & Pradeep Kumar & David Al, 2022. "A comprehensive update to the Mycobacterium tuberculosis H37Rv reference genome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Eugene B. Postnikov & Andrey A. Khalin & Anastasia I. Lavrova & Olga A. Manicheva, 2019. "Resazurin Assay Data for Mycobacterium tuberculosis Supporting a Model of the Growth Accelerated by a Stochastic Non-Homogeneity," Data, MDPI, vol. 4(1), pages 1-8, February.
    11. Joshua S. Woodworth & Helena Strand Clemmensen & Hannah Battey & Karin Dijkman & Thomas Lindenstrøm & Raquel Salvador Laureano & Randy Taplitz & Jeffrey Morgan & Claus Aagaard & Ida Rosenkrands & Ceci, 2021. "A Mycobacterium tuberculosis-specific subunit vaccine that provides synergistic immunity upon co-administration with Bacillus Calmette-Guérin," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Anna G. Green & Chang Ho Yoon & Michael L. Chen & Yasha Ektefaie & Mack Fina & Luca Freschi & Matthias I. Gröschel & Isaac Kohane & Andrew Beam & Maha Farhat, 2022. "A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32022-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.