IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40807-8.html
   My bibliography  Save this article

Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA

Author

Listed:
  • Matthias F. Block

    (Institute of Molecular Biology & Biophysics)

  • Cyrille L. Delley

    (Institute of Molecular Biology & Biophysics
    University of California)

  • Lena M. L. Keller

    (Institute of Molecular Biology & Biophysics)

  • Timo T. Stuehlinger

    (Institute of Molecular Biology & Biophysics)

  • Eilika Weber-Ban

    (Institute of Molecular Biology & Biophysics)

Abstract

Pupylation, a post-translational modification found in Mycobacterium tuberculosis and other Actinobacteria, involves the covalent attachment of prokaryotic ubiquitin-like protein (Pup) to lysines on target proteins by the ligase PafA (proteasome accessory factor A). Pupylated proteins, like ubiquitinated proteins in eukaryotes, are recruited for proteasomal degradation. Proteomic studies suggest that hundreds of potential pupylation targets are modified by the sole existing ligase PafA. This raises intriguing questions regarding the selectivity of this enzyme towards a diverse range of substrates. Here, we show that the availability of surface lysines alone is not sufficient for interaction between PafA and target proteins. By identifying the interacting residues at the pupylation site, we demonstrate that PafA recognizes authentic substrates via a structural recognition motif centered around exposed lysines. Through a combination of computational analysis, examination of available structures and pupylated proteomes, and biochemical experiments, we elucidate the mechanism by which PafA achieves recognition of a wide array of substrates while retaining selective protein turnover.

Suggested Citation

  • Matthias F. Block & Cyrille L. Delley & Lena M. L. Keller & Timo T. Stuehlinger & Eilika Weber-Ban, 2023. "Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40807-8
    DOI: 10.1038/s41467-023-40807-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40807-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40807-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andreas U. Müller & Marc Leibundgut & Nenad Ban & Eilika Weber-Ban, 2019. "Structure and functional implications of WYL domain-containing bacterial DNA damage response regulator PafBC," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    2. S. T. Cole & R. Brosch & J. Parkhill & T. Garnier & C. Churcher & D. Harris & S. V. Gordon & K. Eiglmeier & S. Gas & C. E. Barry & F. Tekaia & K. Badcock & D. Basham & D. Brown & T. Chillingworth & R., 1998. "Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence," Nature, Nature, vol. 393(6685), pages 537-544, June.
    3. S. T. Cole & R. Brosch & J. Parkhill & T. Garnier & C. Churcher & D. Harris & S. V. Gordon & K. Eiglmeier & S. Gas & C. E. Barry & F. Tekaia & K. Badcock & D. Basham & D. Brown & T. Chillingworth & R., 1998. "Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence," Nature, Nature, vol. 396(6707), pages 190-190, November.
    4. Hengjun Cui & Andreas U. Müller & Marc Leibundgut & Jiawen Tian & Nenad Ban & Eilika Weber-Ban, 2021. "Structures of prokaryotic ubiquitin-like protein Pup in complex with depupylase Dop reveal the mechanism of catalytic phosphate formation," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Dupuy & Shreya Ghosh & Oyindamola Adefisayo & John Buglino & Stewart Shuman & Michael S. Glickman, 2022. "Distinctive roles of translesion polymerases DinB1 and DnaE2 in diversification of the mycobacterial genome through substitution and frameshift mutagenesis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Elena Campos-Pardos & Santiago Uranga & Ana Picó & Ana Belén Gómez & Jesús Gonzalo-Asensio, 2024. "Dependency on host vitamin B12 has shaped Mycobacterium tuberculosis Complex evolution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Michiko Shimokawa & Akihiro Ishiwata & Toma Kashima & Chiho Nakashima & Jiaman Li & Riku Fukushima & Naomi Sawai & Miku Nakamori & Yuuki Tanaka & Azusa Kudo & Sae Morikami & Nao Iwanaga & Genki Akai &, 2023. "Identification and characterization of endo-α-, exo-α-, and exo-β-d-arabinofuranosidases degrading lipoarabinomannan and arabinogalactan of mycobacteria," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Tannu Priya Gosain & Saurabh Chugh & Zaigham Abbas Rizvi & Neeraj Kumar Chauhan & Saqib Kidwai & Krishan Gopal Thakur & Amit Awasthi & Ramandeep Singh, 2024. "Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Poonam Chitale & Alexander D. Lemenze & Emily C. Fogarty & Avi Shah & Courtney Grady & Aubrey R. Odom-Mabey & W. Evan Johnson & Jason H. Yang & A. Murat Eren & Roland Brosch & Pradeep Kumar & David Al, 2022. "A comprehensive update to the Mycobacterium tuberculosis H37Rv reference genome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Eugene B. Postnikov & Andrey A. Khalin & Anastasia I. Lavrova & Olga A. Manicheva, 2019. "Resazurin Assay Data for Mycobacterium tuberculosis Supporting a Model of the Growth Accelerated by a Stochastic Non-Homogeneity," Data, MDPI, vol. 4(1), pages 1-8, February.
    7. Cheng Bei & Junhao Zhu & Peter H. Culviner & Mingyu Gan & Eric J. Rubin & Sarah M. Fortune & Qian Gao & Qingyun Liu, 2024. "Genetically encoded transcriptional plasticity underlies stress adaptation in Mycobacterium tuberculosis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Iñaki Comas & Sebastien Gagneux, 2009. "The Past and Future of Tuberculosis Research," PLOS Pathogens, Public Library of Science, vol. 5(10), pages 1-7, October.
    9. Joshua S. Woodworth & Helena Strand Clemmensen & Hannah Battey & Karin Dijkman & Thomas Lindenstrøm & Raquel Salvador Laureano & Randy Taplitz & Jeffrey Morgan & Claus Aagaard & Ida Rosenkrands & Ceci, 2021. "A Mycobacterium tuberculosis-specific subunit vaccine that provides synergistic immunity upon co-administration with Bacillus Calmette-Guérin," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Yuzhe Weng & Dawn Shepherd & Yi Liu & Nitya Krishnan & Brian D. Robertson & Nick Platt & Gerald Larrouy-Maumus & Frances M. Platt, 2022. "Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Tiago Beites & Robert S. Jansen & Ruojun Wang & Adrian Jinich & Kyu Y. Rhee & Dirk Schnappinger & Sabine Ehrt, 2021. "Multiple acyl-CoA dehydrogenase deficiency kills Mycobacterium tuberculosis in vitro and during infection," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Anna G. Green & Chang Ho Yoon & Michael L. Chen & Yasha Ektefaie & Mack Fina & Luca Freschi & Matthias I. Gröschel & Isaac Kohane & Andrew Beam & Maha Farhat, 2022. "A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.
    17. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    19. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40807-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.