IDEAS home Printed from https://ideas.repec.org/a/plo/ppat00/1000600.html
   My bibliography  Save this article

The Past and Future of Tuberculosis Research

Author

Listed:
  • Iñaki Comas
  • Sebastien Gagneux

Abstract

Renewed efforts in tuberculosis (TB) research have led to important new insights into the biology and epidemiology of this devastating disease. Yet, in the face of the modern epidemics of HIV/AIDS, diabetes, and multidrug resistance—all of which contribute to susceptibility to TB—global control of the disease will remain a formidable challenge for years to come. New high-throughput genomics technologies are already contributing to studies of TB's epidemiology, comparative genomics, evolution, and host–pathogen interaction. We argue here, however, that new multidisciplinary approaches—especially the integration of epidemiology with systems biology in what we call “systems epidemiology”—will be required to eliminate TB.

Suggested Citation

  • Iñaki Comas & Sebastien Gagneux, 2009. "The Past and Future of Tuberculosis Research," PLOS Pathogens, Public Library of Science, vol. 5(10), pages 1-7, October.
  • Handle: RePEc:plo:ppat00:1000600
    DOI: 10.1371/journal.ppat.1000600
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1000600
    Download Restriction: no

    File URL: https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1000600&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.ppat.1000600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark Gilchrist & Vesteinn Thorsson & Bin Li & Alistair G. Rust & Martin Korb & Kathleen Kennedy & Tsonwin Hai & Hamid Bolouri & Alan Aderem, 2006. "Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4," Nature, Nature, vol. 441(7090), pages 173-178, May.
    2. L. M. Stuart & J. Boulais & G. M. Charriere & E. J. Hennessy & S. Brunet & I. Jutras & G. Goyette & C. Rondeau & S. Letarte & H. Huang & P. Ye & F. Morales & C. Kocks & J. S. Bader & M. Desjardins & R, 2007. "A systems biology analysis of the Drosophila phagosome," Nature, Nature, vol. 445(7123), pages 95-101, January.
    3. S. T. Cole & R. Brosch & J. Parkhill & T. Garnier & C. Churcher & D. Harris & S. V. Gordon & K. Eiglmeier & S. Gas & C. E. Barry & F. Tekaia & K. Badcock & D. Basham & D. Brown & T. Chillingworth & R., 1998. "Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence," Nature, Nature, vol. 393(6685), pages 537-544, June.
    4. S. T. Cole & R. Brosch & J. Parkhill & T. Garnier & C. Churcher & D. Harris & S. V. Gordon & K. Eiglmeier & S. Gas & C. E. Barry & F. Tekaia & K. Badcock & D. Basham & D. Brown & T. Chillingworth & R., 1998. "Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence," Nature, Nature, vol. 396(6707), pages 190-190, November.
    5. Lönnroth, Knut & Jaramillo, Ernesto & Williams, Brian G. & Dye, Christopher & Raviglione, Mario, 2009. "Drivers of tuberculosis epidemics: The role of risk factors and social determinants," Social Science & Medicine, Elsevier, vol. 68(12), pages 2240-2246, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Dupuy & Shreya Ghosh & Oyindamola Adefisayo & John Buglino & Stewart Shuman & Michael S. Glickman, 2022. "Distinctive roles of translesion polymerases DinB1 and DnaE2 in diversification of the mycobacterial genome through substitution and frameshift mutagenesis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Elena Campos-Pardos & Santiago Uranga & Ana Picó & Ana Belén Gómez & Jesús Gonzalo-Asensio, 2024. "Dependency on host vitamin B12 has shaped Mycobacterium tuberculosis Complex evolution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Michiko Shimokawa & Akihiro Ishiwata & Toma Kashima & Chiho Nakashima & Jiaman Li & Riku Fukushima & Naomi Sawai & Miku Nakamori & Yuuki Tanaka & Azusa Kudo & Sae Morikami & Nao Iwanaga & Genki Akai &, 2023. "Identification and characterization of endo-α-, exo-α-, and exo-β-d-arabinofuranosidases degrading lipoarabinomannan and arabinogalactan of mycobacteria," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Tannu Priya Gosain & Saurabh Chugh & Zaigham Abbas Rizvi & Neeraj Kumar Chauhan & Saqib Kidwai & Krishan Gopal Thakur & Amit Awasthi & Ramandeep Singh, 2024. "Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Poonam Chitale & Alexander D. Lemenze & Emily C. Fogarty & Avi Shah & Courtney Grady & Aubrey R. Odom-Mabey & W. Evan Johnson & Jason H. Yang & A. Murat Eren & Roland Brosch & Pradeep Kumar & David Al, 2022. "A comprehensive update to the Mycobacterium tuberculosis H37Rv reference genome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Eugene B. Postnikov & Andrey A. Khalin & Anastasia I. Lavrova & Olga A. Manicheva, 2019. "Resazurin Assay Data for Mycobacterium tuberculosis Supporting a Model of the Growth Accelerated by a Stochastic Non-Homogeneity," Data, MDPI, vol. 4(1), pages 1-8, February.
    7. Matthias F. Block & Cyrille L. Delley & Lena M. L. Keller & Timo T. Stuehlinger & Eilika Weber-Ban, 2023. "Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Cheng Bei & Junhao Zhu & Peter H. Culviner & Mingyu Gan & Eric J. Rubin & Sarah M. Fortune & Qian Gao & Qingyun Liu, 2024. "Genetically encoded transcriptional plasticity underlies stress adaptation in Mycobacterium tuberculosis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Joshua S. Woodworth & Helena Strand Clemmensen & Hannah Battey & Karin Dijkman & Thomas Lindenstrøm & Raquel Salvador Laureano & Randy Taplitz & Jeffrey Morgan & Claus Aagaard & Ida Rosenkrands & Ceci, 2021. "A Mycobacterium tuberculosis-specific subunit vaccine that provides synergistic immunity upon co-administration with Bacillus Calmette-Guérin," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Yuzhe Weng & Dawn Shepherd & Yi Liu & Nitya Krishnan & Brian D. Robertson & Nick Platt & Gerald Larrouy-Maumus & Frances M. Platt, 2022. "Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Tiago Beites & Robert S. Jansen & Ruojun Wang & Adrian Jinich & Kyu Y. Rhee & Dirk Schnappinger & Sabine Ehrt, 2021. "Multiple acyl-CoA dehydrogenase deficiency kills Mycobacterium tuberculosis in vitro and during infection," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Anna G. Green & Chang Ho Yoon & Michael L. Chen & Yasha Ektefaie & Mack Fina & Luca Freschi & Matthias I. Gröschel & Isaac Kohane & Andrew Beam & Maha Farhat, 2022. "A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Mudassar Arsalan & Omar Mubin & Fady Alnajjar & Belal Alsinglawi, 2020. "COVID-19 Global Risk: Expectation vs. Reality," IJERPH, MDPI, vol. 17(15), pages 1-10, August.
    14. Oscar Patterson-Lomba & Andres Gomez-Lievano, 2018. "On the Scaling Patterns of Infectious Disease Incidence in Cities," CID Working Papers 94a, Center for International Development at Harvard University.
    15. Austin, Kelly F. & DeScisciolo, Cristina & Samuelsen, Lene, 2016. "The Failures of Privatization: A Comparative Investigation of Tuberculosis Rates and the Structure of Healthcare in Less-Developed Nations, 1995–2010," World Development, Elsevier, vol. 78(C), pages 450-460.
    16. Anne Berit Petersen & Natassia Muffley & Khamphithoun Somsamouth & Pramil N. Singh, 2019. "Smoked Tobacco, Air Pollution, and Tuberculosis in Lao PDR: Findings from a National Sample," IJERPH, MDPI, vol. 16(17), pages 1-13, August.
    17. Sara Balestri, 2020. "Inside the Policy Process: Using Textual Analysis to Measure People-Centered Approach in Tuberculosis Policy-Making," Rivista Internazionale di Scienze Sociali, Vita e Pensiero, Pubblicazioni dell'Universita' Cattolica del Sacro Cuore, vol. 128(2), pages 147-172.
    18. Shahed Hossain & Mohammad Abdul Quaiyum & Khalequ Zaman & Sayera Banu & Mohammad Ashaque Husain & Mohammad Akramul Islam & Erwin Cooreman & Martien Borgdorff & Knut Lönnroth & Abdul Hamid Salim & Fran, 2012. "Socio Economic Position in TB Prevalence and Access to Services: Results from a Population Prevalence Survey and a Facility-Based Survey in Bangladesh," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-8, September.
    19. Zoë M McLaren & Kathryn Schnippel & Alana Sharp, 2016. "A Data-Driven Evaluation of the Stop TB Global Partnership Strategy of Targeting Key Populations at Greater Risk for Tuberculosis," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    20. Huffman, Samantha A. & Veen, Jaap & Hennink, Monique M. & McFarland, Deborah A., 2012. "Exploitation, vulnerability to tuberculosis and access to treatment among Uzbek labor migrants in Kazakhstan," Social Science & Medicine, Elsevier, vol. 74(6), pages 864-872.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:1000600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.