IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v393y1998i6685d10.1038_31159.html
   My bibliography  Save this article

Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence

Author

Listed:
  • S. T. Cole

    (Unité de Génétique Moléculaire Bactérienne)

  • R. Brosch

    (Unité de Génétique Moléculaire Bactérienne)

  • J. Parkhill

    (Sanger Centre, Wellcome Trust Genome Campus)

  • T. Garnier

    (Unité de Génétique Moléculaire Bactérienne)

  • C. Churcher

    (Sanger Centre, Wellcome Trust Genome Campus)

  • D. Harris

    (Sanger Centre, Wellcome Trust Genome Campus)

  • S. V. Gordon

    (Unité de Génétique Moléculaire Bactérienne)

  • K. Eiglmeier

    (Unité de Génétique Moléculaire Bactérienne)

  • S. Gas

    (Unité de Génétique Moléculaire Bactérienne)

  • C. E. Barry

    (Tuberculosis Research Unit, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • F. Tekaia

    (Unité de Génétique Moléculaire des Levures)

  • K. Badcock

    (Sanger Centre, Wellcome Trust Genome Campus)

  • D. Basham

    (Sanger Centre, Wellcome Trust Genome Campus)

  • D. Brown

    (Sanger Centre, Wellcome Trust Genome Campus)

  • T. Chillingworth

    (Sanger Centre, Wellcome Trust Genome Campus)

  • R. Connor

    (Sanger Centre, Wellcome Trust Genome Campus)

  • R. Davies

    (Sanger Centre, Wellcome Trust Genome Campus)

  • K. Devlin

    (Sanger Centre, Wellcome Trust Genome Campus)

  • T. Feltwell

    (Sanger Centre, Wellcome Trust Genome Campus)

  • S. Gentles

    (Sanger Centre, Wellcome Trust Genome Campus)

  • N. Hamlin

    (Sanger Centre, Wellcome Trust Genome Campus)

  • S. Holroyd

    (Sanger Centre, Wellcome Trust Genome Campus)

  • T. Hornsby

    (Sanger Centre, Wellcome Trust Genome Campus)

  • K. Jagels

    (Sanger Centre, Wellcome Trust Genome Campus)

  • A. Krogh

    (Center for Biological Sequence Analysis, Technical University of Denmark)

  • J. McLean

    (Sanger Centre, Wellcome Trust Genome Campus)

  • S. Moule

    (Sanger Centre, Wellcome Trust Genome Campus)

  • L. Murphy

    (Sanger Centre, Wellcome Trust Genome Campus)

  • K. Oliver

    (Sanger Centre, Wellcome Trust Genome Campus)

  • J. Osborne

    (Sanger Centre, Wellcome Trust Genome Campus)

  • M. A. Quail

    (Sanger Centre, Wellcome Trust Genome Campus)

  • M.-A. Rajandream

    (Sanger Centre, Wellcome Trust Genome Campus)

  • J. Rogers

    (Sanger Centre, Wellcome Trust Genome Campus)

  • S. Rutter

    (Sanger Centre, Wellcome Trust Genome Campus)

  • K. Seeger

    (Sanger Centre, Wellcome Trust Genome Campus)

  • J. Skelton

    (Sanger Centre, Wellcome Trust Genome Campus)

  • R. Squares

    (Sanger Centre, Wellcome Trust Genome Campus)

  • S. Squares

    (Sanger Centre, Wellcome Trust Genome Campus)

  • J. E. Sulston

    (Sanger Centre, Wellcome Trust Genome Campus)

  • K. Taylor

    (Sanger Centre, Wellcome Trust Genome Campus)

  • S. Whitehead

    (Sanger Centre, Wellcome Trust Genome Campus)

  • B. G. Barrell

    (Sanger Centre, Wellcome Trust Genome Campus)

Abstract

Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.

Suggested Citation

  • S. T. Cole & R. Brosch & J. Parkhill & T. Garnier & C. Churcher & D. Harris & S. V. Gordon & K. Eiglmeier & S. Gas & C. E. Barry & F. Tekaia & K. Badcock & D. Basham & D. Brown & T. Chillingworth & R., 1998. "Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence," Nature, Nature, vol. 393(6685), pages 537-544, June.
  • Handle: RePEc:nat:nature:v:393:y:1998:i:6685:d:10.1038_31159
    DOI: 10.1038/31159
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/31159
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/31159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Campos-Pardos & Santiago Uranga & Ana Picó & Ana Belén Gómez & Jesús Gonzalo-Asensio, 2024. "Dependency on host vitamin B12 has shaped Mycobacterium tuberculosis Complex evolution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Anna G. Green & Chang Ho Yoon & Michael L. Chen & Yasha Ektefaie & Mack Fina & Luca Freschi & Matthias I. Gröschel & Isaac Kohane & Andrew Beam & Maha Farhat, 2022. "A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Pierre Dupuy & Shreya Ghosh & Oyindamola Adefisayo & John Buglino & Stewart Shuman & Michael S. Glickman, 2022. "Distinctive roles of translesion polymerases DinB1 and DnaE2 in diversification of the mycobacterial genome through substitution and frameshift mutagenesis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Iñaki Comas & Sebastien Gagneux, 2009. "The Past and Future of Tuberculosis Research," PLOS Pathogens, Public Library of Science, vol. 5(10), pages 1-7, October.
    5. Joshua S. Woodworth & Helena Strand Clemmensen & Hannah Battey & Karin Dijkman & Thomas Lindenstrøm & Raquel Salvador Laureano & Randy Taplitz & Jeffrey Morgan & Claus Aagaard & Ida Rosenkrands & Ceci, 2021. "A Mycobacterium tuberculosis-specific subunit vaccine that provides synergistic immunity upon co-administration with Bacillus Calmette-Guérin," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Tannu Priya Gosain & Saurabh Chugh & Zaigham Abbas Rizvi & Neeraj Kumar Chauhan & Saqib Kidwai & Krishan Gopal Thakur & Amit Awasthi & Ramandeep Singh, 2024. "Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Poonam Chitale & Alexander D. Lemenze & Emily C. Fogarty & Avi Shah & Courtney Grady & Aubrey R. Odom-Mabey & W. Evan Johnson & Jason H. Yang & A. Murat Eren & Roland Brosch & Pradeep Kumar & David Al, 2022. "A comprehensive update to the Mycobacterium tuberculosis H37Rv reference genome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Michiko Shimokawa & Akihiro Ishiwata & Toma Kashima & Chiho Nakashima & Jiaman Li & Riku Fukushima & Naomi Sawai & Miku Nakamori & Yuuki Tanaka & Azusa Kudo & Sae Morikami & Nao Iwanaga & Genki Akai &, 2023. "Identification and characterization of endo-α-, exo-α-, and exo-β-d-arabinofuranosidases degrading lipoarabinomannan and arabinogalactan of mycobacteria," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Eugene B. Postnikov & Andrey A. Khalin & Anastasia I. Lavrova & Olga A. Manicheva, 2019. "Resazurin Assay Data for Mycobacterium tuberculosis Supporting a Model of the Growth Accelerated by a Stochastic Non-Homogeneity," Data, MDPI, vol. 4(1), pages 1-8, February.
    10. Cheng Bei & Junhao Zhu & Peter H. Culviner & Mingyu Gan & Eric J. Rubin & Sarah M. Fortune & Qian Gao & Qingyun Liu, 2024. "Genetically encoded transcriptional plasticity underlies stress adaptation in Mycobacterium tuberculosis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Yuzhe Weng & Dawn Shepherd & Yi Liu & Nitya Krishnan & Brian D. Robertson & Nick Platt & Gerald Larrouy-Maumus & Frances M. Platt, 2022. "Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Tiago Beites & Robert S. Jansen & Ruojun Wang & Adrian Jinich & Kyu Y. Rhee & Dirk Schnappinger & Sabine Ehrt, 2021. "Multiple acyl-CoA dehydrogenase deficiency kills Mycobacterium tuberculosis in vitro and during infection," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. Matthias F. Block & Cyrille L. Delley & Lena M. L. Keller & Timo T. Stuehlinger & Eilika Weber-Ban, 2023. "Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:393:y:1998:i:6685:d:10.1038_31159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.