IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26750-6.html
   My bibliography  Save this article

Targeting chondrocytes for arresting bony fusion in ankylosing spondylitis

Author

Listed:
  • Fenli Shao

    (Nanjing University)

  • Qianqian Liu

    (Nanjing University)

  • Yuyu Zhu

    (Nanjing University
    Nanjing University of Chinese Medicine)

  • Zhidan Fan

    (Children’s Hospital of Nanjing Medical University)

  • Wenjun Chen

    (Affiliated Hospital of Nanjing University of Chinese Medicine)

  • Shijia Liu

    (Affiliated Hospital of Nanjing University of Chinese Medicine)

  • Xiaohui Li

    (Children’s Hospital of Nanjing Medical University)

  • Wenjie Guo

    (Nanjing University)

  • Gen-Sheng Feng

    (University of California San Diego)

  • Haiguo Yu

    (Children’s Hospital of Nanjing Medical University)

  • Qiang Xu

    (Nanjing University
    Xuzhou Medical University)

  • Yang Sun

    (Nanjing University
    Xuzhou Medical University
    Nanjing University)

Abstract

Bony fusion caused by pathological new bone formation manifests the clinical feature of ankylosing spondylitis (AS). However, the underlying mechanism remains elusive. Here we discovered spontaneous kyphosis, arthritis and bony fusion in mature CD4-Cre;Ptpn11f/f mice, which present the pathophysiological features of AS. A population of CD4-Cre-expressing proliferating chondrocytes was SHP2 deficient, which could differentiate into pre-hypertrophic and hypertrophic chondrocytes. Functionally, SHP2 deficiency in chondrocytes impeded the fusion of epiphyseal plate and promoted chondrogenesis in joint cavity and enthesis. Mechanistically, aberrant chondrocytes promoted ectopic new bone formation through BMP6/pSmad1/5 signaling. It is worth emphasizing that such pathological thickness of growth plates was evident in adolescent humans with enthesitis-related arthritis, which could progress to AS in adulthood. Targeting dysfunctional chondrogenesis with Smo inhibitor sonidegib significantly alleviated the AS-like bone disease in mice. These findings suggest that blockade of chondrogenesis by sonidegib would be a drug repurposing strategy for AS treatment.

Suggested Citation

  • Fenli Shao & Qianqian Liu & Yuyu Zhu & Zhidan Fan & Wenjun Chen & Shijia Liu & Xiaohui Li & Wenjie Guo & Gen-Sheng Feng & Haiguo Yu & Qiang Xu & Yang Sun, 2021. "Targeting chondrocytes for arresting bony fusion in ankylosing spondylitis," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26750-6
    DOI: 10.1038/s41467-021-26750-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26750-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26750-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ying-Nan P. Chen & Matthew J. LaMarche & Ho Man Chan & Peter Fekkes & Jorge Garcia-Fortanet & Michael G. Acker & Brandon Antonakos & Christine Hiu-Tung Chen & Zhouliang Chen & Vesselina G. Cooke & Jas, 2016. "Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases," Nature, Nature, vol. 535(7610), pages 148-152, July.
    2. Kimberly L. Cooper & Seungeun Oh & Yongjin Sung & Ramachandra R. Dasari & Marc W. Kirschner & Clifford J. Tabin, 2013. "Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions," Nature, Nature, vol. 495(7441), pages 375-378, March.
    3. Megan M. Weivoda & Chee Kian Chew & David G. Monroe & Joshua N. Farr & Elizabeth J. Atkinson & Jennifer R. Geske & Brittany Eckhardt & Brianne Thicke & Ming Ruan & Amanda J. Tweed & Louise K. McCready, 2020. "Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Wentian Yang & Jianguo Wang & Douglas C. Moore & Haipei Liang & Mark Dooner & Qian Wu & Richard Terek & Qian Chen & Michael G. Ehrlich & Peter J. Quesenberry & Benjamin G. Neel, 2013. "Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling," Nature, Nature, vol. 499(7459), pages 491-495, July.
    5. Wenjie Guo & Wen Liu & Zhen Chen & Yanhong Gu & Shuang Peng & Lihong Shen & Yan Shen & Xingqi Wang & Gen-Sheng Feng & Yang Sun & Qiang Xu, 2017. "Tyrosine phosphatase SHP2 negatively regulates NLRP3 inflammasome activation via ANT1-dependent mitochondrial homeostasis," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter G. Miller & Murugappan Sathappa & Jamie A. Moroco & Wei Jiang & Yue Qian & Sumaiya Iqbal & Qi Guo & Andrew O. Giacomelli & Subrata Shaw & Camille Vernier & Besnik Bajrami & Xiaoping Yang & Ceris, 2022. "Allosteric inhibition of PPM1D serine/threonine phosphatase via an altered conformational state," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Takayoshi Shirasaki & Satoshi Yamagoe & Tetsuro Shimakami & Kazuhisa Murai & Ryu Imamura & Kiyo-Aki Ishii & Hiroaki Takayama & Yukako Matsumoto & Natsumi Tajima-Shirasaki & Naoto Nagata & Ryogo Shimiz, 2022. "Leukocyte cell-derived chemotaxin 2 is an antiviral regulator acting through the proto-oncogene MET," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Teklab Gebregiworgis & Yoshihito Kano & Jonathan St-Germain & Nikolina Radulovich & Molly L. Udaskin & Ahmet Mentes & Richard Huang & Betty P. K. Poon & Wenguang He & Ivette Valencia-Sama & Claire M. , 2021. "The Q61H mutation decouples KRAS from upstream regulation and renders cancer cells resistant to SHP2 inhibitors," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Zhiyong Xu & Chunyi Guo & Qiaoli Ye & Yueli Shi & Yihui Sun & Jie Zhang & Jiaqi Huang & Yizhou Huang & Chunlai Zeng & Xue Zhang & Yuehai Ke & Hongqiang Cheng, 2021. "Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Chee Ho H’ng & Shanika L. Amarasinghe & Boya Zhang & Hojin Chang & Xinli Qu & David R. Powell & Alberto Rosello-Diez, 2024. "Compensatory growth and recovery of cartilage cytoarchitecture after transient cell death in fetal mouse limbs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Masayuki Tsukasaki & Noriko Komatsu & Takako Negishi-Koga & Nam Cong-Nhat Huynh & Ryunosuke Muro & Yutaro Ando & Yuka Seki & Asuka Terashima & Warunee Pluemsakunthai & Takeshi Nitta & Takashi Nakamura, 2022. "Periosteal stem cells control growth plate stem cells during postnatal skeletal growth," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Shiyun Cao & Shoukai Kang & Haibin Mao & Jiayu Yao & Liangcai Gu & Ning Zheng, 2022. "Defining molecular glues with a dual-nanobody cannabidiol sensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Tanaz Sharifnia & Mathias J. Wawer & Amy Goodale & Yenarae Lee & Mariya Kazachkova & Joshua M. Dempster & Sandrine Muller & Joan Levy & Daniel M. Freed & Josh Sommer & Jérémie Kalfon & Francisca Vazqu, 2023. "Mapping the landscape of genetic dependencies in chordoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Surbhi Chouhan & Dhivya Sridaran & Cody Weimholt & Jingqin Luo & Tiandao Li & Myles C. Hodgson & Luana N. Santos & Samantha Sommer & Bin Fang & John M. Koomen & Markus Seeliger & Cheng-Kui Qu & Armell, 2024. "SHP2 as a primordial epigenetic enzyme expunges histone H3 pTyr-54 to amend androgen receptor homeostasis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Dominik Saul & Robyn Laura Kosinsky & Elizabeth J. Atkinson & Madison L. Doolittle & Xu Zhang & Nathan K. LeBrasseur & Robert J. Pignolo & Paul D. Robbins & Laura J. Niedernhofer & Yuji Ikeno & Diana , 2022. "A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Yuki Matsushita & Angel Ka Yan Chu & Chiaki Tsutsumi-Arai & Shion Orikasa & Mizuki Nagata & Sunny Y. Wong & Joshua D. Welch & Wanida Ono & Noriaki Ono, 2022. "The fate of early perichondrial cells in developing bones," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26750-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.