IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31360-x.html
   My bibliography  Save this article

Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater

Author

Listed:
  • Zeyu Liu

    (Tsinghua University)

  • Youshi Lan

    (China Institute of Atomic Energy, Department of Radiochemistry)

  • Jianfeng Jia

    (Tsinghua University)

  • Yiyun Geng

    (Tsinghua University)

  • Xiaobin Dai

    (Tsinghua University)

  • Litang Yan

    (Tsinghua University)

  • Tongyang Hu

    (Tsinghua University)

  • Jing Chen

    (Tsinghua University)

  • Krzysztof Matyjaszewski

    (Carnegie Mellon University)

  • Gang Ye

    (Tsinghua University)

Abstract

By integrating multi-scale computational simulation with photo-regulated macromolecular synthesis, this study presents a new paradigm for smart design while customizing polymeric adsorbents for uranium harvesting from seawater. A dissipative particle dynamics (DPD) approach, combined with a molecular dynamics (MD) study, is performed to simulate the conformational dynamics and adsorption process of a model uranium grabber, i.e., PAOm-b-PPEGMAn, suggesting that the maximum adsorption capacity with atomic economy can be achieved with a preferred block ratio of 0.18. The designed polymers are synthesized using the PET-RAFT polymerization in a microfluidic platform, exhibiting a record high adsorption capacity of uranium (11.4 ± 1.2 mg/g) in real seawater within 28 days. This study offers an integrated perspective to quantitatively assess adsorption phenomena of polymers, bridging metal-ligand interactions at the molecular level with their spatial conformations at the mesoscopic level. The established protocol is generally adaptable for target-oriented development of more advanced polymers for broadened applications.

Suggested Citation

  • Zeyu Liu & Youshi Lan & Jianfeng Jia & Yiyun Geng & Xiaobin Dai & Litang Yan & Tongyang Hu & Jing Chen & Krzysztof Matyjaszewski & Gang Ye, 2022. "Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31360-x
    DOI: 10.1038/s41467-022-31360-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31360-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31360-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi Sun & Briana Aguila & Jason Perman & Aleksandr S. Ivanov & Vyacheslav S. Bryantsev & Lyndsey D. Earl & Carter W. Abney & Lukasz Wojtas & Shengqian Ma, 2018. "Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Yihui Yuan & Qiuhan Yu & Meng Cao & Lijuan Feng & Shiwei Feng & Tingting Liu & Tiantian Feng & Bingjie Yan & Zhanhu Guo & Ning Wang, 2021. "Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide," Nature Sustainability, Nature, vol. 4(8), pages 708-714, August.
    3. David S. Sholl & Ryan P. Lively, 2016. "Seven chemical separations to change the world," Nature, Nature, vol. 532(7600), pages 435-437, April.
    4. Peyman Z. Moghadam & Timur Islamoglu & Subhadip Goswami & Jason Exley & Marcus Fantham & Clemens F. Kaminski & Randall Q. Snurr & Omar K. Farha & David Fairen-Jimenez, 2018. "Computer-aided discovery of a metal–organic framework with superior oxygen uptake," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    5. Debashish Mukherji & Carlos M. Marques & Kurt Kremer, 2014. "Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    6. Youshi Lan & Xianghao Han & Minman Tong & Hongliang Huang & Qingyuan Yang & Dahuan Liu & Xin Zhao & Chongli Zhong, 2018. "Materials genomics methods for high-throughput construction of COFs and targeted synthesis," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Gao & Yezi Hu & Zewen Shen & Guixia Zhao & Ruiqing Cai & Feng Chu & Zhuoyu Ji & Xiangke Wang & Xiubing Huang, 2024. "Ultra-highly efficient enrichment of uranium from seawater via studtite nanodots growth-elution cycle," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Yinshan Zhang & Yingcai Wang & Zhimin Dong & Youqun Wang & Yuhui Liu & Xiaohong Cao & Zhibin Zhang & Chao Xu & Ning Wang & Yunhai Liu, 2024. "Boosting uranium extraction from Seawater by micro-redox reactors anchored in a seaweed-like adsorbent," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Wei-Wei Fang & Gui-Yu Yang & Zi-Hui Fan & Zi-Chao Chen & Xun-Liang Hu & Zhen Zhan & Irshad Hussain & Yang Lu & Tao He & Bi-En Tan, 2023. "Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingqi Wang & Jiapeng Liu & Hongshuai Wang & Musen Zhou & Guolin Ke & Linfeng Zhang & Jianzhong Wu & Zhifeng Gao & Diannan Lu, 2024. "A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metal-organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Peng Gao & Yezi Hu & Zewen Shen & Guixia Zhao & Ruiqing Cai & Feng Chu & Zhuoyu Ji & Xiangke Wang & Xiubing Huang, 2024. "Ultra-highly efficient enrichment of uranium from seawater via studtite nanodots growth-elution cycle," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Bingbing Yuan & Yuhang Zhang & Pengfei Qi & Dongxiao Yang & Ping Hu & Siheng Zhao & Kaili Zhang & Xiaozhuan Zhang & Meng You & Jiabao Cui & Juhui Jiang & Xiangdong Lou & Q. Jason Niu, 2024. "Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Xueru Yan & Tianqi Song & Min Li & Zhi Wang & Xinlei Liu, 2024. "Sub-micro porous thin polymer membranes for discriminating H2 and CO2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Letitia Petrescu & Codruta-Maria Cormos, 2022. "Classical and Process Intensification Methods for Acetic Acid Concentration: Technical and Environmental Assessment," Energies, MDPI, vol. 15(21), pages 1-23, October.
    6. Xiaolu Liu & Yinghui Xie & Mengjie Hao & Yang Li & Zhongshan Chen & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2024. "Secondary metal ion-induced electrochemical reduction of U(VI) to U(IV) solids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Peixin Zhang & Lifeng Yang & Xing Liu & Jun Wang & Xian Suo & Liyuan Chen & Xili Cui & Huabin Xing, 2022. "Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Mariem Ferchichi & Laszlo Hegely & Peter Lang, 2021. "Decrease of energy demand of semi-batch distillation policies," Energy & Environment, , vol. 32(8), pages 1479-1503, December.
    9. Muhammad Abdul Qyyum & Yus Donald Chaniago & Wahid Ali & Hammad Saulat & Moonyong Lee, 2020. "Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction," Energies, MDPI, vol. 13(19), pages 1-18, September.
    10. Zhongshan Chen & Jingyi Wang & Mengjie Hao & Yinghui Xie & Xiaolu Liu & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2023. "Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Yongyang Song & Jiajia Zhou & Zhongpeng Zhu & Xiaoxia Li & Yue Zhang & Xinyi Shen & Padraic O’Reilly & Xiuling Li & Xinmiao Liang & Lei Jiang & Shutao Wang, 2023. "Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Zhenggong Wang & Xiaofan Luo & Zejun Song & Kuan Lu & Shouwen Zhu & Yanshao Yang & Yatao Zhang & Wangxi Fang & Jian Jin, 2022. "Microporous polymer adsorptive membranes with high processing capacity for molecular separation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Fu, Pengbo & Yu, Hao & Li, Qiqi & Cheng, Tingting & Zhang, Fangzheng & Yang, Tao & Huang, Yuan & Li, Jianping & Fang, Xiangchen & Xiu, Guangli & Wang, Hualin, 2022. "Cyclone rotational drying of lignite based on particle high-speed self-rotation: Lower carrier gas temperature and shorter residence time," Energy, Elsevier, vol. 244(PB).
    14. Bruno Franco & Lieven Clarisse & Martin Van Damme & Juliette Hadji-Lazaro & Cathy Clerbaux & Pierre-François Coheur, 2022. "Ethylene industrial emitters seen from space," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    16. Jinqiu Yuan & Xinda You & Niaz Ali Khan & Runlai Li & Runnan Zhang & Jianliang Shen & Li Cao & Mengying Long & Yanan Liu & Zijian Xu & Hong Wu & Zhongyi Jiang, 2022. "Photo-tailored heterocrystalline covalent organic framework membranes for organics separation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Cheng-Rong Zhang & Wei-Rong Cui & Shun-Mo Yi & Cheng-Peng Niu & Ru-Ping Liang & Jia-Xin Qi & Xiao-Juan Chen & Wei Jiang & Xin Liu & Qiu-Xia Luo & Jian-Ding Qiu, 2022. "An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO4− or 99TcO4−," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Xinfeng Du & Hua Xie & Tianyi Qin & Yihui Yuan & Ning Wang, 2024. "Ultrasensitive optical detection of strontium ions by specific nanosensor with ultrahigh binding affinity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Christopher J. Hartwick & Eric W. Reinheimer & Leonard R. MacGillivray, 2024. "A molecular T-pentomino for separating BTEX hydrocarbons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31360-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.