IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52083-1.html
   My bibliography  Save this article

Secondary metal ion-induced electrochemical reduction of U(VI) to U(IV) solids

Author

Listed:
  • Xiaolu Liu

    (North China Electric Power University
    University of North Texas)

  • Yinghui Xie

    (North China Electric Power University)

  • Mengjie Hao

    (North China Electric Power University)

  • Yang Li

    (North China Electric Power University)

  • Zhongshan Chen

    (North China Electric Power University)

  • Hui Yang

    (North China Electric Power University)

  • Geoffrey I. N. Waterhouse

    (The University of Auckland)

  • Xiangke Wang

    (North China Electric Power University)

  • Shengqian Ma

    (University of North Texas)

Abstract

Recent studies have shown that aqueous U(VI) ions can be transformed into U(VI) precipitates through electrocatalytic redox reactions for uranium recovery. However, there have been no reports of U(IV) solids, such as UO2, using electrochemical methods under ambient conditions since low-valence states of uranium are typically oxidized to U(VI) by O2 or H2O2. Here we developed a secondary metal ion-induced strategy for electrocatalytic production of U(IV) solids from U(VI) solutions using a catalyst consisting of atomically dispersed gallium on hollow nitrogen-doped carbon capsules (Ga-Nx-C). This method relies on the presence of secondary metal ions, e.g., alkaline earth metals, transition metals, lanthanide metals, and actinide metals, which promote the generation of UO2 or bimetallic U(IV)-containing oxides through a two-electron transfer process. No U(IV) solid products were generated in the presence of alkali metal ions. Mechanistic studies revealed that the strong binding affinity between U(IV) and alkaline earth metals (Ca2+/Mg2+/Sr2+/Ba2+), transition metals (Ni2+/Zn2+/Pb2+/Fe3+, etc.) and lanthanide/actinide metals (Ce4+/Eu3+/Th4+/La3+) suppressed re-oxidation of U(IV) to U(VI), leading to the generation of U(IV)O2 and Mx(M = Ce, Eu, Th, La)U(IV)yO2. This work provides fundamental insights into the electrochemical behavior of uranium in aqueous media, whilst guiding uranyl capture from nuclear waste and contaminated water.

Suggested Citation

  • Xiaolu Liu & Yinghui Xie & Mengjie Hao & Yang Li & Zhongshan Chen & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2024. "Secondary metal ion-induced electrochemical reduction of U(VI) to U(IV) solids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52083-1
    DOI: 10.1038/s41467-024-52083-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52083-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52083-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yihui Yuan & Qiuhan Yu & Meng Cao & Lijuan Feng & Shiwei Feng & Tingting Liu & Tiantian Feng & Bingjie Yan & Zhanhu Guo & Ning Wang, 2021. "Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide," Nature Sustainability, Nature, vol. 4(8), pages 708-714, August.
    2. Zezhen Pan & Barbora Bártová & Thomas LaGrange & Sergei M. Butorin & Neil C. Hyatt & Martin C. Stennett & Kristina O. Kvashnina & Rizlan Bernier-Latmani, 2020. "Nanoscale mechanism of UO2 formation through uranium reduction by magnetite," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Zhongshan Chen & Jingyi Wang & Mengjie Hao & Yinghui Xie & Xiaolu Liu & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2023. "Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Vladislav A. Petrov & Michael I. Ojovan & Sergey V. Yudintsev, 2023. "Material Aspect of Sustainable Nuclear Waste Management," Sustainability, MDPI, vol. 15(15), pages 1-7, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Gao & Yezi Hu & Zewen Shen & Guixia Zhao & Ruiqing Cai & Feng Chu & Zhuoyu Ji & Xiangke Wang & Xiubing Huang, 2024. "Ultra-highly efficient enrichment of uranium from seawater via studtite nanodots growth-elution cycle," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Zeyu Liu & Youshi Lan & Jianfeng Jia & Yiyun Geng & Xiaobin Dai & Litang Yan & Tongyang Hu & Jing Chen & Krzysztof Matyjaszewski & Gang Ye, 2022. "Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Zhongshan Chen & Jingyi Wang & Mengjie Hao & Yinghui Xie & Xiaolu Liu & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2023. "Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Xinfeng Du & Hua Xie & Tianyi Qin & Yihui Yuan & Ning Wang, 2024. "Ultrasensitive optical detection of strontium ions by specific nanosensor with ultrahigh binding affinity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Yanghui Hou & Peng Zhou & Fuyang Liu & Ke Tong & Yanyu Lu & Zhengmao Li & Jialiang Liang & Meiping Tong, 2024. "Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Yinghui Xie & Qiuyu Rong & Fengyi Mao & Shiyu Wang & You Wu & Xiaolu Liu & Mengjie Hao & Zhongshan Chen & Hui Yang & Geoffrey I. N. Waterhouse & Shengqian Ma & Xiangke Wang, 2024. "Engineering the pore environment of antiparallel stacked covalent organic frameworks for capture of iodine pollutants," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Wei Li & Wen Duan & Guocheng Liao & Fanfan Gao & Yusen Wang & Rongxia Cui & Jincai Zhao & Chuanyi Wang, 2024. "0.68% of solar-to-hydrogen efficiency and high photostability of organic-inorganic membrane catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52083-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.