IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50895-9.html
   My bibliography  Save this article

Ultrasensitive optical detection of strontium ions by specific nanosensor with ultrahigh binding affinity

Author

Listed:
  • Xinfeng Du

    (Hainan University)

  • Hua Xie

    (Hainan University)

  • Tianyi Qin

    (One Health Institute, Hainan University)

  • Yihui Yuan

    (Hainan University)

  • Ning Wang

    (Hainan University)

Abstract

The release and escape of radioactive materials has posed tremendous threats to the global environment. Among various radioactive elements, 90Sr has attracted growing attention due to its long half-life and its tendency to accumulate in bone tissue. Nonetheless, the concentration of 90Sr in radioactive waste is exceedingly low, far below the detection limits of currently available strontium-targeting chemical sensors. Herein, we propose an optical nanosensor (Sr2+-nanosensor) that exhibits an ultra-low detection limit of 0.5 nM, surpassing the 90Sr in the treated radioactive water from the Fukushima. The sensor offers wide sensing range of eight orders of magnitude, rapid response of less than 10 s, and high selectivity against 31 common ions. These excellent performances are attributed to a specific ligand (Sr2+-ligand) for Sr2+ recognition. The Sr2+ is found to be bound by six oxygen atoms from the Sr2+-ligand with a stability constant at least two orders higher than that of other traditional ligands. This study offers invaluable insights for the design of Sr2+-sensing methodologies as well as a technique for detecting trace amounts of environmental radioactive pollution.

Suggested Citation

  • Xinfeng Du & Hua Xie & Tianyi Qin & Yihui Yuan & Ning Wang, 2024. "Ultrasensitive optical detection of strontium ions by specific nanosensor with ultrahigh binding affinity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50895-9
    DOI: 10.1038/s41467-024-50895-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50895-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50895-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lijuan Feng & Hui Wang & Tingting Liu & Tiantian Feng & Meng Cao & Jiacheng Zhang & Tao Liu & Zhanhu Guo & Costas Galiotis & Yihui Yuan & Ning Wang, 2023. "Ultrasensitive and highly selective detection of strontium ions," Nature Sustainability, Nature, vol. 6(7), pages 789-796, July.
    2. Yihui Yuan & Qiuhan Yu & Meng Cao & Lijuan Feng & Shiwei Feng & Tingting Liu & Tiantian Feng & Bingjie Yan & Zhanhu Guo & Ning Wang, 2021. "Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide," Nature Sustainability, Nature, vol. 4(8), pages 708-714, August.
    3. Katrein Sauer & Ivo Zizak & Jean-Baptiste Forien & Alexander Rack & Ernesto Scoppola & Paul Zaslansky, 2022. "Primary radiation damage in bone evolves via collagen destruction by photoelectrons and secondary emission self-absorption," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Matthew Ponsford, 2023. "Research in Chornobyl zone restarts amid ravages of war," Nature, Nature, vol. 624(7991), pages 244-246, December.
    5. James Lawrence & Gabriele C. Sosso & Luka Đorđević & Harry Pinfold & Davide Bonifazi & Giovanni Costantini, 2020. "Combining high-resolution scanning tunnelling microscopy and first-principles simulations to identify halogen bonding," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    6. Bianca Nogrady, 2023. "Is Fukushima wastewater release safe? What the science says," Nature, Nature, vol. 618(7967), pages 894-895, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai-Yan Sun & Zhi-Hua Chen & Bing Hu & Jun-Hao Tang & Lu Yang & Yan-Ling Guo & Yue-Xin Yao & Mei-Ling Feng & Xiao-Ying Huang, 2024. "Boosting selective Cs+ uptake through the modulation of stacking modes in layered niobate-based perovskites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zeyu Liu & Youshi Lan & Jianfeng Jia & Yiyun Geng & Xiaobin Dai & Litang Yan & Tongyang Hu & Jing Chen & Krzysztof Matyjaszewski & Gang Ye, 2022. "Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Xiaolu Liu & Yinghui Xie & Mengjie Hao & Yang Li & Zhongshan Chen & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2024. "Secondary metal ion-induced electrochemical reduction of U(VI) to U(IV) solids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Zhongshan Chen & Jingyi Wang & Mengjie Hao & Yinghui Xie & Xiaolu Liu & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2023. "Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Dana Bloß & Florian Trinter & Isaak Unger & Christina Zindel & Carolin Honisch & Johannes Viehmann & Nils Kiefer & Lutz Marder & Catmarna Küstner-Wetekam & Emilia Heikura & Lorenz S. Cederbaum & Olle , 2024. "X-ray radiation damage cycle of solvated inorganic ions," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Yi-Xin Liu & Ping-Xin Wu & Jing-Yi Dai & Ping-Wei Cai & Cai Sun & Shou-Tian Zheng, 2024. "Site differentiation strategy for selective strontium uptake and elution within an all-inorganic polyoxoniobate framework," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Yinshan Zhang & Yingcai Wang & Zhimin Dong & Youqun Wang & Yuhui Liu & Xiaohong Cao & Zhibin Zhang & Chao Xu & Ning Wang & Yunhai Liu, 2024. "Boosting uranium extraction from Seawater by micro-redox reactors anchored in a seaweed-like adsorbent," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Peng Gao & Yezi Hu & Zewen Shen & Guixia Zhao & Ruiqing Cai & Feng Chu & Zhuoyu Ji & Xiangke Wang & Xiubing Huang, 2024. "Ultra-highly efficient enrichment of uranium from seawater via studtite nanodots growth-elution cycle," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50895-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.