IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31145-2.html
   My bibliography  Save this article

The inequality labor loss risk from future urban warming and adaptation strategies

Author

Listed:
  • Cheng He

    (Fudan University
    Boston University
    Fudan University)

  • Yuqiang Zhang

    (University of North Carolina at Chapel Hill)

  • Alexandra Schneider

    (Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH))

  • Renjie Chen

    (Fudan University)

  • Yan Zhang

    (Fudan University
    Fudan University
    Fudan University
    Shanghai Institute of Eco-Chongming (SIEC))

  • Weichun Ma

    (Fudan University
    Fudan University
    Fudan University
    Shanghai Institute of Eco-Chongming (SIEC))

  • Patrick L. Kinney

    (Boston University)

  • Haidong Kan

    (Fudan University)

Abstract

Heat-induced labor loss is a major economic cost related to climate change. Here, we use hourly heat stress data modeled with a regional climate model to investigate the heat-induced labor loss in 231 Chinese cities. Results indicate that future urban heat stress is projected to cause an increase in labor losses exceeding 0.20% of the total account gross domestic product (GDP) per year by the 2050s relative to the 2010s. In this process, certain lower-paid sectors could be disproportionately impacted. The implementation of various urban adaptation strategies could offset 10% of the additional economic loss per year and help reduce the inequality-related impact on lower-paid sectors. So future urban warming can not only damage cities as a whole but can also contribute to income inequality. The implication of adaptation strategies should be considered in regard to not only cooling requirements but also environmental justice.

Suggested Citation

  • Cheng He & Yuqiang Zhang & Alexandra Schneider & Renjie Chen & Yan Zhang & Weichun Ma & Patrick L. Kinney & Haidong Kan, 2022. "The inequality labor loss risk from future urban warming and adaptation strategies," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31145-2
    DOI: 10.1038/s41467-022-31145-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31145-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31145-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John P. Dunne & Ronald J. Stouffer & Jasmin G. John, 2013. "Reductions in labour capacity from heat stress under climate warming," Nature Climate Change, Nature, vol. 3(6), pages 563-566, June.
    2. Xiao, Min & Lin, Yaolin & Han, Jie & Zhang, Guoqiang, 2014. "A review of green roof research and development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 633-648.
    3. Guangzhao Chen & Xia Li & Xiaoping Liu & Yimin Chen & Xun Liang & Jiye Leng & Xiaocong Xu & Weilin Liao & Yue’an Qiu & Qianlian Wu & Kangning Huang, 2020. "Global projections of future urban land expansion under shared socioeconomic pathways," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Yuqiang Zhang & Drew T. Shindell, 2021. "Costs from labor losses due to extreme heat in the USA attributable to climate change," Climatic Change, Springer, vol. 164(3), pages 1-18, February.
    5. E. Scott Krayenhoff & Mohamed Moustaoui & Ashley M. Broadbent & Vishesh Gupta & Matei Georgescu, 2018. "Diurnal interaction between urban expansion, climate change and adaptation in US cities," Nature Climate Change, Nature, vol. 8(12), pages 1097-1103, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijin Liu & Yilin Wu, 2024. "Drought shocks, adaptive strategies, and vulnerability to relative poverty," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12679-12703, November.
    2. Yuxiang Li & Jens-Christian Svenning & Weiqi Zhou & Kai Zhu & Jesse F. Abrams & Timothy M. Lenton & William J. Ripple & Zhaowu Yu & Shuqing N. Teng & Robert R. Dunn & Chi Xu, 2024. "Green spaces provide substantial but unequal urban cooling globally," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.
    2. Wu, Xiaoran & Zhao, Na & Wang, Yuwei & Zhang, Liqiang & Wang, Wei & Liu, Yansui, 2024. "Cropland non-agriculturalization caused by the expansion of built-up areas in China during 1990–2020," Land Use Policy, Elsevier, vol. 146(C).
    3. Luke A. Parsons & Drew Shindell & Michelle Tigchelaar & Yuqiang Zhang & June T. Spector, 2021. "Increased labor losses and decreased adaptation potential in a warmer world," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. TC Chakraborty & Zander S. Venter & Matthias Demuzere & Wenfeng Zhan & Jing Gao & Lei Zhao & Yun Qian, 2024. "Large disagreements in estimates of urban land across scales and their implications," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Guangdong Li & Chuanglin Fang & Yingjie Li & Zhenbo Wang & Siao Sun & Sanwei He & Wei Qi & Chao Bao & Haitao Ma & Yupeng Fan & Yuxue Feng & Xiaoping Liu, 2022. "Global impacts of future urban expansion on terrestrial vertebrate diversity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    7. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    8. O’Keeffe, Juliette M. & Gilmour, Daniel & Simpson, Edward, 2016. "A network approach to overcoming barriers to market engagement for SMEs in energy efficiency initiatives such as the Green Deal," Energy Policy, Elsevier, vol. 97(C), pages 582-590.
    9. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    11. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Agarwala, Matthew & Burke, Matt & Klusak, Patrycja & Mohaddes, Kamiar & Volz, Ulrich & Zenghelis, Dimitri, 2021. "Climate Change And Fiscal Sustainability: Risks And Opportunities," National Institute Economic Review, National Institute of Economic and Social Research, vol. 258, pages 28-46, November.
    13. Han Li & Wei Song, 2021. "Cropland Abandonment and Influencing Factors in Chongqing, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    14. Wei Yang & Yuanxu Ma & Linhai Jing & Siyuan Wang & Zhongchang Sun & Yunwei Tang & Hui Li, 2022. "Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant’s Range," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    15. Katherine M. Pedersen & Tania M. Busch Isaksen & Marissa G. Baker & Noah Seixas & Nicole A. Errett, 2021. "Climate Change Impacts and Workforce Development Needs in Federal Region X: A Qualitative Study of Occupational Health and Safety Professionals’ Perceptions," IJERPH, MDPI, vol. 18(4), pages 1-13, February.
    16. CONTE KEIVABU, Risto, 2020. "Too hot to study? Gender and SES differences in the effect of temperature on school performance," SocArXiv whtf5, Center for Open Science.
    17. Wen Yi & Albert P. C. Chan, 2017. "Effects of Heat Stress on Construction Labor Productivity in Hong Kong: A Case Study of Rebar Workers," IJERPH, MDPI, vol. 14(9), pages 1-14, September.
    18. Juan Carlos Alías & José Antonio Mejías & Natividad Chaves, 2022. "Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain," Land, MDPI, vol. 11(3), pages 1-12, March.
    19. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    20. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31145-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.