IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52241-5.html
   My bibliography  Save this article

Large disagreements in estimates of urban land across scales and their implications

Author

Listed:
  • TC Chakraborty

    (Pacific Northwest National Laboratory)

  • Zander S. Venter

    (Norwegian Institute for Nature Research - NINA)

  • Matthias Demuzere

    (B-Kode VOF)

  • Wenfeng Zhan

    (Nanjing University)

  • Jing Gao

    (University of Delaware)

  • Lei Zhao

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Yun Qian

    (Pacific Northwest National Laboratory)

Abstract

Improvements in high-resolution satellite remote sensing and computational advancements have sped up the development of global datasets that delineate urban land, crucial for understanding climate risks in our increasingly urbanizing world. Here, we analyze urban land cover patterns across spatiotemporal scales from several such current-generation products. While all the datasets show a rapidly urbanizing world, with global urban land nearly tripling between 1985 and 2015, there are substantial discrepancies in urban land area estimates among the products influenced by scale, differing urban definitions, and methodologies. We discuss the implications of these discrepancies for several use cases, including for monitoring urban climate hazards and for modeling urbanization-induced impacts on weather and climate from regional to global scales. Our results demonstrate the importance of choosing fit-for-purpose datasets for examining specific aspects of historical, present, and future urbanization with implications for sustainable development, resource allocation, and quantification of climate impacts.

Suggested Citation

  • TC Chakraborty & Zander S. Venter & Matthias Demuzere & Wenfeng Zhan & Jing Gao & Lei Zhao & Yun Qian, 2024. "Large disagreements in estimates of urban land across scales and their implications," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52241-5
    DOI: 10.1038/s41467-024-52241-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52241-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52241-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    2. E. Scott Krayenhoff & Mohamed Moustaoui & Ashley M. Broadbent & Vishesh Gupta & Matei Georgescu, 2018. "Diurnal interaction between urban expansion, climate change and adaptation in US cities," Nature Climate Change, Nature, vol. 8(12), pages 1097-1103, December.
    3. Jing Gao & Brian C. O’Neill, 2020. "Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Edens, Bram & Maes, Joachim & Hein, Lars & Obst, Carl & Siikamaki, Juha & Schenau, Sjoerd & Javorsek, Marko & Chow, Julian & Chan, Jessica Ying & Steurer, Anton & Alfieri, Alessandra, 2022. "Establishing the SEEA Ecosystem Accounting as a global standard," Ecosystem Services, Elsevier, vol. 54(C).
    5. Keer Zhang & Chang Cao & Haoran Chu & Lei Zhao & Jiayu Zhao & Xuhui Lee, 2023. "Increased heat risk in wet climate induced by urban humid heat," Nature, Nature, vol. 617(7962), pages 738-742, May.
    6. Jasper van Vliet, 2019. "Direct and indirect loss of natural area from urban expansion," Nature Sustainability, Nature, vol. 2(8), pages 755-763, August.
    7. Jing Gao & Melissa S. Bukovsky, 2023. "Urban land patterns can moderate population exposures to climate extremes over the 21st century," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Jean-François Pekel & Andrew Cottam & Noel Gorelick & Alan S. Belward, 2016. "High-resolution mapping of global surface water and its long-term changes," Nature, Nature, vol. 540(7633), pages 418-422, December.
    9. Lei Zhao & Keith Oleson & Elie Bou-Zeid & E. Scott Krayenhoff & Andrew Bray & Qing Zhu & Zhonghua Zheng & Chen Chen & Michael Oppenheimer, 2021. "Global multi-model projections of local urban climates," Nature Climate Change, Nature, vol. 11(2), pages 152-157, February.
    10. Guangzhao Chen & Xia Li & Xiaoping Liu & Yimin Chen & Xun Liang & Jiye Leng & Xiaocong Xu & Weilin Liao & Yue’an Qiu & Qianlian Wu & Kangning Huang, 2020. "Global projections of future urban land expansion under shared socioeconomic pathways," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    11. Angel Hsu & Glenn Sheriff & Tirthankar Chakraborty & Diego Manya, 2021. "Disproportionate exposure to urban heat island intensity across major US cities," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    12. Angel Hsu & Glenn Sheriff & Tirthankar Chakraborty & Diego Manya, 2021. "Publisher Correction: Disproportionate exposure to urban heat island intensity across major US cities," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangdong Li & Chuanglin Fang & Yingjie Li & Zhenbo Wang & Siao Sun & Sanwei He & Wei Qi & Chao Bao & Haitao Ma & Yupeng Fan & Yuxue Feng & Xiaoping Liu, 2022. "Global impacts of future urban expansion on terrestrial vertebrate diversity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Wan Ting Katty Huang & Pierre Masselot & Elie Bou-Zeid & Simone Fatichi & Athanasios Paschalis & Ting Sun & Antonio Gasparrini & Gabriele Manoli, 2023. "Economic valuation of temperature-related mortality attributed to urban heat islands in European cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Yuxiang Li & Jens-Christian Svenning & Weiqi Zhou & Kai Zhu & Jesse F. Abrams & Timothy M. Lenton & William J. Ripple & Zhaowu Yu & Shuqing N. Teng & Robert R. Dunn & Chi Xu, 2024. "Green spaces provide substantial but unequal urban cooling globally," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Emanuele Massaro & Rossano Schifanella & Matteo Piccardo & Luca Caporaso & Hannes Taubenböck & Alessandro Cescatti & Gregory Duveiller, 2023. "Spatially-optimized urban greening for reduction of population exposure to land surface temperature extremes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Noa Levin, 2023. "Book review essay: City, Climate and Architecture; Coping with Urban Climates," Urban Studies, Urban Studies Journal Limited, vol. 60(13), pages 2725-2730, October.
    6. Tuan Nguyen Tran, 2024. "Comparing the process of converting land use purposes between socio-economic regions in Vietnam from 2007 to 2020," Environmental & Socio-economic Studies, Sciendo, vol. 12(3), pages 51-62.
    7. Ivan Rudik & Derek Lemoine & Antonia Marcheva, 2024. "Equity and Efficiency in the Bipartisan Infrastructure Law’s Adaptation Investments," NBER Chapters, in: Environmental and Energy Policy and the Economy, volume 6, National Bureau of Economic Research, Inc.
    8. Luke J. Harrington & Kristie L. Ebi & David J. Frame & Friederike E. L. Otto, 2022. "Integrating attribution with adaptation for unprecedented future heatwaves," Climatic Change, Springer, vol. 172(1), pages 1-7, May.
    9. Hongbo Guo & Enzai Du & César Terrer & Robert B. Jackson, 2024. "Global distribution of surface soil organic carbon in urban greenspaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. C. Grislain-Letremy & J. Sixou & A. Sotura, 2024. "Urban Heat Islands and Inequalities: Evidence from French Cities," Documents de Travail de l'Insee - INSEE Working Papers 2024-21, Institut National de la Statistique et des Etudes Economiques.
    11. Wu, Xiaoran & Zhao, Na & Wang, Yuwei & Zhang, Liqiang & Wang, Wei & Liu, Yansui, 2024. "Cropland non-agriculturalization caused by the expansion of built-up areas in China during 1990–2020," Land Use Policy, Elsevier, vol. 146(C).
    12. Bakhtsiyarava, Maryia & Schinasi, Leah H. & Sánchez, Brisa N. & Dronova, Iryna & Kephart, Josiah L. & Ju, Yang & Gouveia, Nelson & Caiaffa, Waleska Teixeira & O'Neill, Marie S. & Yamada, Goro & Arunac, 2023. "Modification of temperature-related human mortality by area-level socioeconomic and demographic characteristics in Latin American cities," Social Science & Medicine, Elsevier, vol. 317(C).
    13. Bekri, Eleni S. & Kokkoris, Ioannis P. & Skuras, Dimitrios & Hein, Lars & Dimopoulos, Panayotis, 2024. "Ecosystem accounting for water resources at the catchment scale, a case study for the Peloponnisos, Greece," Ecosystem Services, Elsevier, vol. 65(C).
    14. Jonathon P. Schuldt & Adam R. Pearson, 2023. "Public recognition of climate change inequities within the United States," Climatic Change, Springer, vol. 176(8), pages 1-14, August.
    15. Claire Conzelmann & Jeremy Hoffman & Toan Phan & Arianna Salazar-Miranda, 2022. "Long-term Effects of Redlining on Environmental Risk Exposure," Working Paper 22-09R, Federal Reserve Bank of Richmond.
    16. Meng Wang & Qingchen Xu & Zemeng Fan & Xiaofang Sun, 2021. "The Imprint of Built-Up Land Expansion on Cropland Distribution and Productivity in Shandong Province," Land, MDPI, vol. 10(6), pages 1-12, June.
    17. Shi, Han & Wang, Bo & Qiu, Yueming Lucy & Deng, Nana & Xie, Baichen & Zhang, Bin & Ma, Shijun, 2024. "The unequal impacts of extremely high temperatures on households’ adaptive behaviors: Empirical evidence from fine-grained electricity consumption data," Energy Policy, Elsevier, vol. 190(C).
    18. Farina, Georges & Le Coënt, Philippe & Hérivaux, Cécile, 2024. "Do urban environmental inequalities influence demand for nature based solutions?," Ecological Economics, Elsevier, vol. 224(C).
    19. Lucas Cain & Danae Hernandez-Cortes & Christopher Timmins & Paige Weber, 2023. "Recent Findings and Methodologies in Economics Research in Environmental Justice," CESifo Working Paper Series 10283, CESifo.
    20. Borsky, Stefan & Fesselmeyer, Eric & Vogelsang, Lennart, 2024. "Urban heat and within-city residential sorting," Journal of Environmental Economics and Management, Elsevier, vol. 127(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52241-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.