IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i3p425-d771713.html
   My bibliography  Save this article

Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain

Author

Listed:
  • Juan Carlos Alías

    (Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain)

  • José Antonio Mejías

    (Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain)

  • Natividad Chaves

    (Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain)

Abstract

The low profitability of agricultural products in a globalized market context is causing the abandonment of less profitable agroforestry systems in Spain. This fact is implicated in a change in land use, increasing the forest area, which could alter the carbon stock in the soil. Thus, the objective of this study was to determine if the abandonment of rural areas and the change in land use has an impact on the soil organic carbon stock in agroforestry systems in southwestern Spain. Through historical aerial photographs and current satellite images, sites were identified where samples of abandoned agricultural soils in the 1950s were collected. They were compared with soil samples from adjacent locations whose agricultural activities continue to this day. After more than 60 years, the abandonment of agricultural activity is associated with a 54% increase in C concentration and 34.8% in soil organic carbon in the upper 30 cm of soil profiles. Therefore, the abandonment of agricultural land has influenced the carbon stock of this territory, becoming a carbon sink.

Suggested Citation

  • Juan Carlos Alías & José Antonio Mejías & Natividad Chaves, 2022. "Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain," Land, MDPI, vol. 11(3), pages 1-12, March.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:425-:d:771713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/3/425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/3/425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barrios, Edmundo, 2007. "Soil biota, ecosystem services and land productivity," Ecological Economics, Elsevier, vol. 64(2), pages 269-285, December.
    2. Guangzhao Chen & Xia Li & Xiaoping Liu & Yimin Chen & Xun Liang & Jiye Leng & Xiaocong Xu & Weilin Liao & Yue’an Qiu & Qianlian Wu & Kangning Huang, 2020. "Global projections of future urban land expansion under shared socioeconomic pathways," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Kees Jan van Groenigen & Craig W. Osenberg & Bruce A. Hungate, 2011. "Increased soil emissions of potent greenhouse gases under increased atmospheric CO2," Nature, Nature, vol. 475(7355), pages 214-216, July.
    4. Han Li & Wei Song, 2021. "Cropland Abandonment and Influencing Factors in Chongqing, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    2. Xinyue Qu & Yue Li & Chu Wang & Jiayue Qiao & Kai Zhu & Yan Sun & Qiannan Hu, 2024. "Effect of Sod Production on Physical, Chemical, and Biological Properties of Soils in North and South China," Agriculture, MDPI, vol. 14(10), pages 1-20, October.
    3. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. K. M. T. S. Bandara & Kazuhito Sakai & Tamotsu Nakandakari & Kozue Yuge, 2022. "A Gas Diffusion Analysis Method for Simulating Surface Nitrous Oxide Emissions in Soil Gas Concentrations Measurement," Agriculture, MDPI, vol. 12(8), pages 1-16, July.
    5. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Han Li & Wei Song, 2021. "Cropland Abandonment and Influencing Factors in Chongqing, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    7. Wei Yang & Yuanxu Ma & Linhai Jing & Siyuan Wang & Zhongchang Sun & Yunwei Tang & Hui Li, 2022. "Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant’s Range," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    8. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    9. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    10. Lafuite, A.-S. & Loreau, M., 2017. "Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems," Ecological Modelling, Elsevier, vol. 351(C), pages 96-108.
    11. Karner, Katrin & Mitter, Hermine & Sinabell, Franz & Schönhart, Martin, 2024. "Participatory development of Shared Socioeconomic Pathways for Austria’s agriculture and food systems," Land Use Policy, Elsevier, vol. 142(C).
    12. Yong Li & De Li Liu & Graeme Schwenke & Bin Wang & Ian Macadam & Weijin Wang & Guangdi Li & Ram C Dalal, 2017. "Responses of nitrous oxide emissions from crop rotation systems to four projected future climate change scenarios on a black Vertosol in subtropical Australia," Climatic Change, Springer, vol. 142(3), pages 545-558, June.
    13. Karl S. Zimmerer & Steven J. Vanek, 2016. "Toward the Integrated Framework Analysis of Linkages among Agrobiodiversity, Livelihood Diversification, Ecological Systems, and Sustainability amid Global Change," Land, MDPI, vol. 5(2), pages 1-28, April.
    14. Yusong Xie & Katsue Fukamachi & Wen Wang & Shozo Shibata, 2023. "Exploring Land Use Management Strategies through Morphological Spatial Patterns Using a Climate–Socioeconomic-Based Land Use Simulation Modeling Framework," Land, MDPI, vol. 12(9), pages 1-24, September.
    15. Tuan Nguyen Tran, 2024. "Comparing the process of converting land use purposes between socio-economic regions in Vietnam from 2007 to 2020," Environmental & Socio-economic Studies, Sciendo, vol. 12(3), pages 51-62.
    16. Guohua Ding & Mingjun Ding & Kun Xie & Jingru Li, 2022. "Driving Mechanisms of Cropland Abandonment from the Perspectives of Household and Topography in the Poyang Lake Region, China," Land, MDPI, vol. 11(6), pages 1-22, June.
    17. Brady, Mark & Hedlund, Katarina & Cong, Rong-Gang & Hemerik, Lia & Hotes, Stefan & Machado, Stephen & Mattsson, Lennart & Schulz, Elke & Thomsen, Ingrid K., 2015. "Valuing Supporting Soil Ecosystem Services in Agriculture: a Natural Capital Approach," MPRA Paper 112303, University Library of Munich, Germany.
    18. Ng, Sin Jin & Li, Bing & He, Zhengyang & Han, Jing-Cheng & Munir, Muhammad Tajammal & Wu, Xiaofeng & Huang, Yuefei, 2023. "Global phosphorus cycling: The impact of international commercial trading and the path towards sustainable phosphorus management," Resources Policy, Elsevier, vol. 85(PA).
    19. Eduilson Carneiro & Wilza Lopes & Giovana Espindola, 2021. "Linking Urban Sprawl and Surface Urban Heat Island in the Teresina–Timon Conurbation Area in Brazil," Land, MDPI, vol. 10(5), pages 1-16, May.
    20. Snapp, Sieglinde, 2022. "Embracing variability in soils on smallholder farms: New tools and better science," Agricultural Systems, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:425-:d:771713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.