IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10207-y.html
   My bibliography  Save this article

Are microtubules tension sensors?

Author

Listed:
  • Olivier Hamant

    (Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS)

  • Daisuke Inoue

    (Cell and Plant Physiology Laboratory, CytoMorpho Lab, CEA, Biosciences and Biotechnology Institute of Grenoble)

  • David Bouchez

    (Université Paris-Saclay)

  • Jacques Dumais

    (Universidad Adolfo Ibáñez)

  • Eric Mjolsness

    (University of California)

Abstract

Mechanical signals play many roles in cell and developmental biology. Several mechanotransduction pathways have been uncovered, but the mechanisms identified so far only address the perception of stress intensity. Mechanical stresses are tensorial in nature, and thus provide dual mechanical information: stress magnitude and direction. Here we propose a parsimonious mechanism for the perception of the principal stress direction. In vitro experiments show that microtubules are stabilized under tension. Based on these results, we explore the possibility that such microtubule stabilization operates in vivo, most notably in plant cells where turgor-driven tensile stresses exceed greatly those observed in animal cells.

Suggested Citation

  • Olivier Hamant & Daisuke Inoue & David Bouchez & Jacques Dumais & Eric Mjolsness, 2019. "Are microtubules tension sensors?," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10207-y
    DOI: 10.1038/s41467-019-10207-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10207-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10207-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tuo Ji & Lihua Zheng & Jiale Wu & Mei Duan & Qianwen Liu & Peng Liu & Chen Shen & Jinling Liu & Qinyi Ye & Jiangqi Wen & Jiangli Dong & Tao Wang, 2023. "The thioesterase APT1 is a bidirectional-adjustment redox sensor," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Yin-Wei Kuo & Mohammed Mahamdeh & Yazgan Tuna & Jonathon Howard, 2022. "The force required to remove tubulin from the microtubule lattice by pulling on its α-tubulin C-terminal tail," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10207-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.