IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51384-9.html
   My bibliography  Save this article

Real-space imaging for discovering a rotated node structure in metal-organic framework

Author

Listed:
  • Jiale Feng

    (Soochow University
    Soochow University)

  • Zhipeng Feng

    (Soochow University
    Soochow University)

  • Liang Xu

    (Soochow University
    Soochow University)

  • Haibing Meng

    (Taiyuan University of Technology)

  • Xiao Chen

    (Tsinghua University)

  • Mengmeng Ma

    (Soochow University
    Soochow University)

  • Lei Wang

    (Soochow University
    Soochow University)

  • Bin Song

    (Soochow University
    Soochow University)

  • Xuan Tang

    (East China University of Science and Technology)

  • Sheng Dai

    (East China University of Science and Technology)

  • Fei Wei

    (Tsinghua University)

  • Tao Cheng

    (Soochow University
    Soochow University)

  • Boyuan Shen

    (Soochow University
    Soochow University)

Abstract

Resolving the detailed structures of metal organic frameworks is of great significance for understanding their structure-property relation. Real-space imaging methods could exhibit superiority in revealing not only the local structure but also the bulk symmetry of these complex porous materials, compared to reciprocal-space diffraction methods, despite the technical challenges. Here we apply a low-dose imaging technique to clearly resolve the atomic structures of building units in a metal-organic framework, MIL-125. An unexpected node structure is discovered by directly imaging the rotation of Ti-O nodes, different from the unrotated structure predicted by previous X-ray diffraction. The imaged structure and symmetry can be confirmed by the structural simulations and energy calculations. Then, the distribution of node rotation from the edge to the center of a MIL-125 particle is revealed by the image analysis of Ti-O rotation. The related defects and surface terminations in MIL-125 are also investigated in the real-space images. These results not only unraveled the node symmetry in MIL-125 with atomic resolution but also inspired further studies on discovering more unpredicted structural changes in other porous materials by real-space imaging methods.

Suggested Citation

  • Jiale Feng & Zhipeng Feng & Liang Xu & Haibing Meng & Xiao Chen & Mengmeng Ma & Lei Wang & Bin Song & Xuan Tang & Sheng Dai & Fei Wei & Tao Cheng & Boyuan Shen, 2024. "Real-space imaging for discovering a rotated node structure in metal-organic framework," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51384-9
    DOI: 10.1038/s41467-024-51384-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51384-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51384-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Boyuan Shen & Xiao Chen & Xiaoyu Fan & Hao Xiong & Huiqiu Wang & Weizhong Qian & Yao Wang & Fei Wei, 2021. "Resolving atomic SAPO-34/18 intergrowth architectures for methanol conversion by identifying light atoms and bonds," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Hailian Li & Mohamed Eddaoudi & M. O'Keeffe & O. M. Yaghi, 1999. "Design and synthesis of an exceptionally stable and highly porous metal-organic framework," Nature, Nature, vol. 402(6759), pages 276-279, November.
    3. Maximilian Haider & Stephan Uhlemann & Eugen Schwan & Harald Rose & Bernd Kabius & Knut Urban, 1998. "Electron microscopy image enhanced," Nature, Nature, vol. 392(6678), pages 768-769, April.
    4. Boyuan Shen & Xiao Chen & Huiqiu Wang & Hao Xiong & Eric G. T. Bosch & Ivan Lazić & Dali Cai & Weizhong Qian & Shifeng Jin & Xin Liu & Yu Han & Fei Wei, 2021. "A single-molecule van der Waals compass," Nature, Nature, vol. 592(7855), pages 541-544, April.
    5. Boyuan Shen & Xiao Chen & Kui Shen & Hao Xiong & Fei Wei, 2020. "Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Boyuan Shen & Huiqiu Wang & Hao Xiong & Xiao Chen & Eric G. T. Bosch & Ivan Lazić & Weizhong Qian & Fei Wei, 2022. "Atomic imaging of zeolite-confined single molecules by electron microscopy," Nature, Nature, vol. 607(7920), pages 703-707, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengmeng Ma & Xuliang Zhang & Xiao Chen & Hao Xiong & Liang Xu & Tao Cheng & Jianyu Yuan & Fei Wei & Boyuan Shen, 2023. "In situ imaging of the atomic phase transition dynamics in metal halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Linjing Tong & Siming Huang & Yujian Shen & Suya Liu & Xiaomin Ma & Fang Zhu & Guosheng Chen & Gangfeng Ouyang, 2022. "Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Xinxing Peng & Philipp M. Pelz & Qiubo Zhang & Peican Chen & Lingyun Cao & Yaqian Zhang & Hong-Gang Liao & Haimei Zheng & Cheng Wang & Shi-Gang Sun & Mary C. Scott, 2022. "Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Boyang Liu & Xiao Chen & Ning Huang & Shaoxiong Liu & Yu Wang & Xiaocheng Lan & Fei Wei & Tiefeng Wang, 2023. "Imaging the dynamic influence of functional groups on metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Li, Lirong & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2022. "Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Yun Fan & Yu Shen & Jia Zhang & Xinglong Zhang & Zeqi Zhang & Hongfeng Li & Yong Peng & Jiena Weng & Ruijie Xie & Wenlei Zhang & Yu Han & Yawen Xiao & Suoying Zhang & Bing Zheng & Hao-Li Zhang & Sheng, 2024. "Wedging crystals to fabricate crystalline framework nanosheets via mechanochemistry," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Poudel, Niranjan & Singleton, Patrick A., 2022. "Preferences for roundabout attributes among US bicyclists: A discrete choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 316-329.
    10. Qingju Wang & Jianbo Hu & Lifeng Yang & Zhaoqiang Zhang & Tian Ke & Xili Cui & Huabin Xing, 2022. "One-step removal of alkynes and propadiene from cracking gases using a multi-functional molecular separator," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Baokun Liang & Yingying Zhang & Christopher Leist & Zhaowei Ou & Miroslav Položij & Zhiyong Wang & David Mücke & Renhao Dong & Zhikun Zheng & Thomas Heine & Xinliang Feng & Ute Kaiser & Haoyuan Qi, 2022. "Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Ying Wang & Vinod K. Paidi & Weizhen Wang & Yong Wang & Guangri Jia & Tingyu Yan & Xiaoqiang Cui & Songhua Cai & Jingxiang Zhao & Kug-Seung Lee & Lawrence Yoon Suk Lee & Kwok-Yin Wong, 2024. "Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Ahmed Hussain Jawhari, 2022. "Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy," Energies, MDPI, vol. 15(23), pages 1-16, November.
    15. Simon N. Deger & Sebastian J. Weishäupl & Alexander Pöthig & Roland A. Fischer, 2022. "A Perylenediimide-Based Zinc-Coordination Polymer for Photosensitized Singlet-Oxygen Generation," Energies, MDPI, vol. 15(7), pages 1-12, March.
    16. Siyu He & Xiaoqi Tang & Yunzhou Deng & Ni Yin & Wangxiao Jin & Xiuyuan Lu & Desui Chen & Chenyang Wang & Tulai Sun & Qi Chen & Yizheng Jin, 2023. "Anomalous efficiency elevation of quantum-dot light-emitting diodes induced by operational degradation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Lixia Wu & Yu Zhu & Jing Yuan & Xiaozhong Guo & Qianfeng Zhang, 2024. "Advances in Adsorption, Absorption, and Catalytic Materials for VOCs Generated in Typical Industries," Energies, MDPI, vol. 17(8), pages 1-30, April.
    18. Wang, Pengfei & Teng, Ying & Zhu, Jinlong & Bao, Wancheng & Han, Songbai & Li, Yun & Zhao, Yusheng & Xie, Heping, 2022. "Review on the synergistic effect between metal–organic frameworks and gas hydrates for CH4 storage and CO2 separation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Guoli Zhang & Jian Zhang & Yu Tao & Fuwei Gan & Geyu Lin & Juncong Liang & Chengshuo Shen & Yuebiao Zhang & Huibin Qiu, 2024. "Facile fabrication of recyclable robust noncovalent porous crystals from low-symmetry helicene derivative," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51384-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.