IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-55857-3.html
   My bibliography  Save this article

Operando monitoring of the functional role of tetrahedral cobalt centers for the oxygen evolution reaction

Author

Listed:
  • Yonggui Zhao

    (University of Zurich)

  • Nanchen Dongfang

    (University of Zurich)

  • Chong Huang

    (University of Zurich)

  • Rolf Erni

    (Swiss Federal Laboratories for Materials Science and Technology)

  • Jingguo Li

    (University of Science and Technology of China
    Uppsala University)

  • Han Zhao

    (University of Zurich)

  • Long Pan

    (School of Materials Science and Engineering, Southeast University)

  • Marcella Iannuzzi

    (University of Zurich)

  • Greta R. Patzke

    (University of Zurich)

Abstract

The complexity of the intrinsic oxygen evolution reaction (OER) mechanism, particularly the precise relationships between the local coordination geometry of active metal centers and the resulting OER kinetics, remains to be fully understood. Herein, we construct a series of 3 d transition metal-incorporated cobalt hydroxide-based nanobox architectures for the OER which contain tetrahedrally coordinated Co(II) centers. Combination of bulk- and surface-sensitive operando spectroelectrochemical approaches reveals that tetrahedral Co(II) centers undergo a dynamic transformation into highly active Co(IV) intermediates acting as the true OER active species which activate lattice oxygen during the OER. Such a dynamic change in the local coordination geometry of Co centers can be further facilitated by partial Fe incorporation. In comparison, the formation of such active Co(IV) species is found to be hindered in CoOOH and Co-FeOOH, which are predominantly containing [CoIIIO6] and [CoII/FeIIIO6] octahedra, respectively, but no mono-μ-oxo-bridged [CoIIO4] moieties. This study offers a comprehensive view of the dynamic role of local coordination geometry of active metal centers in the OER kinetics.

Suggested Citation

  • Yonggui Zhao & Nanchen Dongfang & Chong Huang & Rolf Erni & Jingguo Li & Han Zhao & Long Pan & Marcella Iannuzzi & Greta R. Patzke, 2025. "Operando monitoring of the functional role of tetrahedral cobalt centers for the oxygen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55857-3
    DOI: 10.1038/s41467-025-55857-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-55857-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-55857-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sandra Haschke & Michael Mader & Stefanie Schlicht & André M. Roberts & Alfredo M. Angeles-Boza & Johannes A. C. Barth & Julien Bachmann, 2018. "Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Wenchao Wan & Yonggui Zhao & Shiqian Wei & Carlos A. Triana & Jingguo Li & Andrea Arcifa & Christopher S. Allen & Rui Cao & Greta R. Patzke, 2021. "Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Dong Young Chung & Pietro P. Lopes & Pedro Farinazzo Bergamo Dias Martins & Haiying He & Tomoya Kawaguchi & Peter Zapol & Hoydoo You & Dusan Tripkovic & Dusan Strmcnik & Yisi Zhu & Soenke Seifert & Su, 2020. "Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction," Nature Energy, Nature, vol. 5(3), pages 222-230, March.
    4. Jinzhen Huang & Hongyuan Sheng & R. Dominic Ross & Jiecai Han & Xianjie Wang & Bo Song & Song Jin, 2021. "Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Hong Nhan Nong & Lorenz J. Falling & Arno Bergmann & Malte Klingenhof & Hoang Phi Tran & Camillo Spöri & Rik Mom & Janis Timoshenko & Guido Zichittella & Axel Knop-Gericke & Simone Piccinin & Javier P, 2020. "Key role of chemistry versus bias in electrocatalytic oxygen evolution," Nature, Nature, vol. 587(7834), pages 408-413, November.
    6. Sihong Wang & Qu Jiang & Shenghong Ju & Chia-Shuo Hsu & Hao Ming Chen & Di Zhang & Fang Song, 2022. "Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Zhen-Feng Huang & Jiajia Song & Yonghua Du & Shibo Xi & Shuo Dou & Jean Marie Vianney Nsanzimana & Cheng Wang & Zhichuan J. Xu & Xin Wang, 2019. "Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts," Nature Energy, Nature, vol. 4(4), pages 329-338, April.
    8. Ning Zhang & Xiaobin Feng & Dewei Rao & Xi Deng & Lejuan Cai & Bocheng Qiu & Ran Long & Yujie Xiong & Yang Lu & Yang Chai, 2020. "Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    9. Sheng-Chih Lin & Chun-Chih Chang & Shih-Yun Chiu & Hsiao-Tien Pai & Tzu-Yu Liao & Chia-Shuo Hsu & Wei-Hung Chiang & Ming-Kang Tsai & Hao Ming Chen, 2020. "Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    10. Zhen-Feng Huang & Shibo Xi & Jiajia Song & Shuo Dou & Xiaogang Li & Yonghua Du & Caozheng Diao & Zhichuan J. Xu & Xin Wang, 2021. "Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Pengcheng Ye & Keqing Fang & Haiyan Wang & Yahao Wang & Hao Huang & Chenbin Mo & Jiqiang Ning & Yong Hu, 2024. "Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Shiyi Chen & Shishi Zhang & Lei Guo & Lun Pan & Chengxiang Shi & Xiangwen Zhang & Zhen-Feng Huang & Guidong Yang & Ji-Jun Zou, 2023. "Reconstructed Ir‒O‒Mo species with strong Brønsted acidity for acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Fangqing Wang & Peichao Zou & Yangyang Zhang & Wenli Pan & Ying Li & Limin Liang & Cong Chen & Hui Liu & Shijian Zheng, 2023. "Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Xu Luo & Hongyu Zhao & Xin Tan & Sheng Lin & Kesong Yu & Xueqin Mu & Zhenhua Tao & Pengxia Ji & Shichun Mu, 2024. "Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Zuyun He & Jun Zhang & Zhiheng Gong & Hang Lei & Deng Zhou & Nian Zhang & Wenjie Mai & Shijun Zhao & Yan Chen, 2022. "Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Chen Wang & Chaoyuan Deng & Panlong Zhai & Xiaoran Shi & Wei Liu & Dingfeng Jin & Bing Shang & Junfeng Gao & Licheng Sun & Jungang Hou, 2025. "Tracking the correlation between spintronic structure and oxygen evolution reaction mechanism of cobalt-ruthenium-based electrocatalyst," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    9. Jie Wei & Yangfan Shao & Jingbo Xu & Fang Yin & Zejian Li & Haitao Qian & Yinping Wei & Liang Chang & Yu Han & Jia Li & Lin Gan, 2024. "Sequential oxygen evolution and decoupled water splitting via electrochemical redox reaction of nickel hydroxides," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Hongnan Jia & Na Yao & Yiming Jin & Liqing Wu & Juan Zhu & Wei Luo, 2024. "Stabilizing atomic Ru species in conjugated sp2 carbon-linked covalent organic framework for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Zhirong Zhang & Chen Feng & Dongdi Wang & Shiming Zhou & Ruyang Wang & Sunpei Hu & Hongliang Li & Ming Zuo & Yuan Kong & Jun Bao & Jie Zeng, 2022. "Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Siran Xu & Sihua Feng & Yue Yu & Dongping Xue & Mengli Liu & Chao Wang & Kaiyue Zhao & Bingjun Xu & Jia-Nan Zhang, 2024. "Dual-site segmentally synergistic catalysis mechanism: boosting CoFeSx nanocluster for sustainable water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Zuyun He & Jinwoo Hwang & Zhiheng Gong & Mengzhen Zhou & Nian Zhang & Xiongwu Kang & Jeong Woo Han & Yan Chen, 2022. "Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Gang Zhou & Peifang Wang & Bin Hu & Xinyue Shen & Chongchong Liu & Weixiang Tao & Peilin Huang & Lizhe Liu, 2022. "Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Yixin Hao & Sung-Fu Hung & Luqi Wang & Liming Deng & Wen-Jing Zeng & Chenchen Zhang & Zih-Yi Lin & Chun-Han Kuo & Ye Wang & Ying Zhang & Han-Yi Chen & Feng Hu & Linlin Li & Shengjie Peng, 2024. "Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Cong Fang & Jian Zhou & Lili Zhang & Wenchao Wan & Yuxiao Ding & Xiaoyan Sun, 2023. "Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Earl Matthew Davis & Arno Bergmann & Chao Zhan & Helmut Kuhlenbeck & Beatriz Roldan Cuenya, 2023. "Comparative study of Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film electrocatalysts for the oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Chia-Shuo Hsu & Jiali Wang & You-Chiuan Chu & Jui-Hsien Chen & Chia-Ying Chien & Kuo-Hsin Lin & Li Duan Tsai & Hsiao-Chien Chen & Yen-Fa Liao & Nozomu Hiraoka & Yuan-Chung Cheng & Hao Ming Chen, 2023. "Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55857-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.