IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13474.html
   My bibliography  Save this article

Boosting functionality of synthetic DNA circuits with tailored deactivation

Author

Listed:
  • Kevin Montagne

    (University of Tokyo)

  • Guillaume Gines

    (LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo)

  • Teruo Fujii

    (LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo)

  • Yannick Rondelez

    (LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo
    Gulliver UMR7083 CNRS, ESPCI Paris, PSL Research University)

Abstract

Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play a critical role. Here we introduce a mechanism to tune the nonlinearities associated with individual nodes of a synthetic network. This mechanism is based on programming deactivation laws using dedicated saturable pathways. We demonstrate this approach through the conversion of a single-node homoeostatic network into a bistable and reversible switch. Furthermore, we prove its generality by adding new functions to the library of reported man-made molecular devices: a system with three addressable bits of memory, and the first DNA-encoded excitable circuit. Specific saturable deactivation pathways thus greatly enrich the functional capability of a given circuit topology.

Suggested Citation

  • Kevin Montagne & Guillaume Gines & Teruo Fujii & Yannick Rondelez, 2016. "Boosting functionality of synthetic DNA circuits with tailored deactivation," Nature Communications, Nature, vol. 7(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13474
    DOI: 10.1038/ncomms13474
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13474
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyowon Jang & Jayeon Song & Sunjoo Kim & Jung-Hyun Byun & Kyoung G. Lee & Kwang-Hyun Park & Euijeon Woo & Eun-Kyung Lim & Juyeon Jung & Taejoon Kang, 2023. "ANCA: artificial nucleic acid circuit with argonaute protein for one-step isothermal detection of antibiotic-resistant bacteria," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Adrian Zambrano & Giorgio Fracasso & Mengfei Gao & Martina Ugrinic & Dishi Wang & Dietmar Appelhans & Andrew deMello & T-Y. Dora Tang, 2022. "Programmable synthetic cell networks regulated by tuneable reaction rates," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Fabian Schnitter & Benedikt Rieß & Christian Jandl & Job Boekhoven, 2022. "Memory, switches, and an OR-port through bistability in chemically fueled crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Jianbang Wang & Zhenzhen Li & Itamar Willner, 2022. "Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.