IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12787.html
   My bibliography  Save this article

Molecular transport through large-diameter DNA nanopores

Author

Listed:
  • Swati Krishnan

    (Technische Universität München
    Zentrum für Nanotechnologie und Nanomaterialien/WSI, Technische Universität München)

  • Daniela Ziegler

    (Technische Universität München
    Zentrum für Nanotechnologie und Nanomaterialien/WSI, Technische Universität München)

  • Vera Arnaut

    (Technische Universität München
    Zentrum für Nanotechnologie und Nanomaterialien/WSI, Technische Universität München)

  • Thomas G. Martin

    (Zentrum für Nanotechnologie und Nanomaterialien/WSI, Technische Universität München
    Technische Universität München
    Present address: Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K.)

  • Korbinian Kapsner

    (Technische Universität München
    Zentrum für Nanotechnologie und Nanomaterialien/WSI, Technische Universität München)

  • Katharina Henneberg

    (Technische Universität München)

  • Andreas R. Bausch

    (Technische Universität München)

  • Hendrik Dietz

    (Zentrum für Nanotechnologie und Nanomaterialien/WSI, Technische Universität München
    Technische Universität München)

  • Friedrich C. Simmel

    (Technische Universität München
    Zentrum für Nanotechnologie und Nanomaterialien/WSI, Technische Universität München)

Abstract

DNA-based nanopores are synthetic biomolecular membrane pores, whose geometry and chemical functionality can be tuned using the tools of DNA nanotechnology, making them promising molecular devices for applications in single-molecule biosensing and synthetic biology. Here we introduce a large DNA membrane channel with an ≈4 nm diameter pore, which has stable electrical properties and spontaneously inserts into flat lipid bilayer membranes. Membrane incorporation is facilitated by a large number of hydrophobic functionalizations or, alternatively, streptavidin linkages between biotinylated channels and lipids. The channel displays an Ohmic conductance of ≈3 nS, consistent with its size, and allows electrically driven translocation of single-stranded and double-stranded DNA analytes. Using confocal microscopy and a dye influx assay, we demonstrate the spontaneous formation of membrane pores in giant unilamellar vesicles. Pores can be created both in an outside-in and an inside-out configuration.

Suggested Citation

  • Swati Krishnan & Daniela Ziegler & Vera Arnaut & Thomas G. Martin & Korbinian Kapsner & Katharina Henneberg & Andreas R. Bausch & Hendrik Dietz & Friedrich C. Simmel, 2016. "Molecular transport through large-diameter DNA nanopores," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12787
    DOI: 10.1038/ncomms12787
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12787
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoming Liu & Fengyu Liu & Hemani Chhabra & Christopher Maffeo & Zhuo Chen & Qiang Huang & Aleksei Aksimentiev & Tatsuo Arai, 2024. "A lumen-tunable triangular DNA nanopore for molecular sensing and cross-membrane transport," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jianxin Yang & Tianle Pan & Zhenming Xie & Wu Yuan & Ho-Pui Ho, 2024. "In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Fabian Schnitter & Benedikt Rieß & Christian Jandl & Job Boekhoven, 2022. "Memory, switches, and an OR-port through bistability in chemically fueled crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Katya Ahmad & Abid Javed & Conor Lanphere & Peter V. Coveney & Elena V. Orlova & Stefan Howorka, 2023. "Structure and dynamics of an archetypal DNA nanoarchitecture revealed via cryo-EM and molecular dynamics simulations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Swarup Dey & Adam Dorey & Leeza Abraham & Yongzheng Xing & Irene Zhang & Fei Zhang & Stefan Howorka & Hao Yan, 2022. "A reversibly gated protein-transporting membrane channel made of DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.