IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924007616.html
   My bibliography  Save this article

Effect of electric field chirality on the unpinning of chemical waves in the Belousov–Zhabotinsky reaction

Author

Listed:
  • Sebastian, Anupama
  • Sibeesh, Puthiyapurayil
  • Amrutha, S.V.
  • Punacha, Shreyas
  • Shajahan, T.K.

Abstract

We investigate the unpinning of chemical spiral waves attached to obstacles in the Belousov–Zhabotinsky (BZ) reaction using a Circularly Polarized Electric Field (CPEF). The unpinning is quantified by measuring the angle at which the spiral leaves the obstacle. Previously, we had found that the wave can unpin when the electric field along the direction of the spiral is above a threshold value. When we apply a DC field, this condition can be satisfied for a range of spiral phases, which we call the unpinning window (UW). With a CPEF, this UW moves either along the direction of the spiral (co-rotating) or against the spiral (counter-rotating). We find that when the field is co-rotating, it can take several rotations of the spiral to get unpinned. With a counter-rotating field, the spiral always unpins during the first rotation. We analyze how unpinning with CPEF depends on the electric field’s relative speed, chirality, and strength using experiments and the Oregonator model. Our work helps to understand and control chemical waves.

Suggested Citation

  • Sebastian, Anupama & Sibeesh, Puthiyapurayil & Amrutha, S.V. & Punacha, Shreyas & Shajahan, T.K., 2024. "Effect of electric field chirality on the unpinning of chemical waves in the Belousov–Zhabotinsky reaction," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007616
    DOI: 10.1016/j.chaos.2024.115209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abhishek Sharma & Marcus Tze-Kiat Ng & Juan Manuel Parrilla Gutierrez & Yibin Jiang & Leroy Cronin, 2024. "A programmable hybrid digital chemical information processor based on the Belousov-Zhabotinsky reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Abhishek Sharma & Marcus Tze-Kiat Ng & Juan Manuel Parrilla Gutierrez & Yibin Jiang & Leroy Cronin, 2024. "Publisher Correction: A programmable hybrid digital chemical information processor based on the Belousov-Zhabotinsky reaction," Nature Communications, Nature, vol. 15(1), pages 1-1, December.
    3. Karimov, Artur & Kopets, Ekaterina & Karimov, Timur & Almjasheva, Oksana & Arlyapov, Viacheslav & Butusov, Denis, 2023. "Empirically developed model of the stirring-controlled Belousov–Zhabotinsky reaction," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Zhai, Chi & Sun, Wei, 2021. "Analytical approximation of a self-oscillatory reaction system using the Laplace-Borel transform," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Veeresha, P., 2022. "The efficient fractional order based approach to analyze chemical reaction associated with pattern formation," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    6. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Ma, Jun & Jia, Ya & Yi, Ming & Tang, Jun & Xia, Ya-Feng, 2009. "Suppression of spiral wave and turbulence by using amplitude restriction of variable in a local square area," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1331-1339.
    8. Hu, Yipeng & Ding, Qianming & Wu, Yong & Jia, Ya, 2023. "Polarized electric field-induced drift of spiral waves in discontinuous cardiac media," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Adamatzky, Andrew & Costello, Benjamin de Lacy, 2007. "Binary collisions between wave-fragments in a sub-excitable Belousov–Zhabotinsky medium," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 307-315.
    10. Juan Manuel Parrilla-Gutierrez & Abhishek Sharma & Soichiro Tsuda & Geoffrey J. T. Cooper & Gerardo Aragon-Camarasa & Kevin Donkers & Leroy Cronin, 2020. "A programmable chemical computer with memory and pattern recognition," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    11. Zhang, Yin & Wu, Fuqiang & Wang, Chunni & Ma, Jun, 2019. "Stability of target waves in excitable media under electromagnetic induction and radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 519-530.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Nabulsi, Rami Ahmad & Anukool, Waranont, 2024. "Spiral waves in fractal dimensions and their elimination in λ − ω systems with less damaging intervention," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Wang, Xueqin & Yu, Dong & Li, Tianyu & Jia, Ya, 2023. "Logistic stochastic resonance in the Hodgkin–Huxley neuronal system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Rajagopal, Karthikeyan & Nezhad Hajian, Dorsa & Natiq, Hayder & Peng, Yuexi & Parastesh, Fatemeh & Jafari, Sajad, 2024. "Effect of Gaussian gradient in the medium's action potential morphology on spiral waves," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    4. Karimov, Artur & Kopets, Ekaterina & Karimov, Timur & Almjasheva, Oksana & Arlyapov, Viacheslav & Butusov, Denis, 2023. "Empirically developed model of the stirring-controlled Belousov–Zhabotinsky reaction," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Fabian Schnitter & Benedikt Rieß & Christian Jandl & Job Boekhoven, 2022. "Memory, switches, and an OR-port through bistability in chemically fueled crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Zhan, Feibiao & Su, Jianzhong & Liu, Shenquan, 2023. "Canards dynamics to explore the rhythm transition under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Dmitrii V. Kriukov & Jurriaan Huskens & Albert S. Y. Wong, 2024. "Exploring the programmability of autocatalytic chemical reaction networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Nezhad Hajian, Dorsa & Parastesh, Fatemeh & Jafari, Sajad & Perc, Matjaž & Klemenčič, Eva, 2024. "Medium inhomogeneities modulate emerging spiral waves," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    9. Toth, Rita & Stone, Christopher & Adamatzky, Andrew & de Lacy Costello, Ben & Bull, Larry, 2009. "Experimental validation of binary collisions between wave fragments in the photosensitive Belousov–Zhabotinsky reaction," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1605-1615.
    10. Proskurkin, Ivan S. & Vanag, Vladimir K. & Lavrova, Anastasia I., 2024. "Temporal asymmetry in Hebbian regulation of pulse coupling in the network of excitable chemical cells," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    11. Ahmed A. Agiza & Kady Oakley & Jacob K. Rosenstein & Brenda M. Rubenstein & Eunsuk Kim & Marc Riedel & Sherief Reda, 2023. "Digital circuits and neural networks based on acid-base chemistry implemented by robotic fluid handling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Adamatzky, Andrew, 2009. "Localizations in cellular automata with mutualistic excitation rules," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 981-1003.
    13. Maćešić, Stevan & Čupić, Željko & Kolar-Anić, Ljiljana, 2023. "Effect of diffusion on steady state stability of an oscillatory reaction model," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    14. Hu, Yipeng & Ding, Qianming & Wu, Yong & Jia, Ya, 2023. "Polarized electric field-induced drift of spiral waves in discontinuous cardiac media," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    15. Peng, Zhen & Adam, Zachary R., 2024. "Two mechanisms for the spontaneous emergence, execution, and reprogramming of chemical logic circuits," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    16. Ma, Jun & Xu, Ying & Wang, Chunni & Jin, Wuyin, 2016. "Pattern selection and self-organization induced by random boundary initial values in a neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 586-594.
    17. Xu, Ying & Ren, Guodong & Ma, Jun, 2023. "Patterns stability in cardiac tissue under spatial electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    18. Hu, Xueyan & Ding, Qianming & Wu, Yong & Huang, Weifang & Yang, Lijian & Jia, Ya, 2024. "Dynamical rewiring promotes synchronization in memristive FitzHugh-Nagumo neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    19. Ali, Khalid K. & Wazwaz, Abdul-Majid & Maneea, M., 2024. "Efficient solutions for fractional Tsunami shallow-water mathematical model: A comparative study via semi analytical techniques," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    20. Adamatzky, Andrew & Holley, Julian & Bull, Larry & De Lacy Costello, Ben, 2011. "On computing in fine-grained compartmentalised Belousov–Zhabotinsky medium," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 779-790.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.