IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4270-d1153711.html
   My bibliography  Save this article

Experimental Study on Temperature Sensitivity of the State of Charge of Aluminum Battery Storage System

Author

Listed:
  • Bin-Hao Chen

    (Department of Vehicle Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei City 10608, Taiwan)

  • Chen-Hsiang Hsieh

    (Department of Vehicle Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei City 10608, Taiwan)

  • Li-Tao Teng

    (Green Energy and Environment Research Laboratory, Industrial Technology Research Institute, Tainan City 711010, Taiwan)

  • Chien-Chung Huang

    (Green Energy and Environment Research Laboratory, Industrial Technology Research Institute, Tainan City 711010, Taiwan)

Abstract

The operating temperature of a battery energy storage system (BESS) has a significant impact on battery performance, such as safety, state of charge (SOC), and cycle life. For weather-resistant aluminum batteries (AlBs), the precision of the SOC is sensitive to temperature variation, and errors in the SOC of AlBs may occur. In this study, a combination of the experimental charge/discharge data and a 3D anisotropic homogeneous (Ani-hom) transient heat transfer simulation is performed to understand the thermal effect of a novel battery system, say an aluminum-ion battery. The study conducts a turbulence fluid dynamics method to solve the temperature distribution of the battery rack, and the entropy generation method analyzes the heat generation of AlB during the charging/discharging process. The AlB is modeled by a second-order Thevenin equivalent circuit to estimate the status of the battery. An extended Kalman filter is applied to obtain the accurate SOC for monitoring the battery cell. The current study conducts the Galvanostatic Intermittent Titration Technique (GITT) on aluminum-ion batteries under different operation temperatures: 25 °C, 40 °C, 60 °C, and 80 °C. According to the sensitivity analysis of the SOC, the temperature sensitivity tends to or greater than one, S T ≥ 1 , while the operation temperature is above 40 °C, and the SOC modification of EKF tmep estimator improves the battery state of charge in the error range below 1%.

Suggested Citation

  • Bin-Hao Chen & Chen-Hsiang Hsieh & Li-Tao Teng & Chien-Chung Huang, 2023. "Experimental Study on Temperature Sensitivity of the State of Charge of Aluminum Battery Storage System," Energies, MDPI, vol. 16(11), pages 1-30, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4270-:d:1153711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    2. Meng-Chang Lin & Ming Gong & Bingan Lu & Yingpeng Wu & Di-Yan Wang & Mingyun Guan & Michael Angell & Changxin Chen & Jiang Yang & Bing-Joe Hwang & Hongjie Dai, 2015. "An ultrafast rechargeable aluminium-ion battery," Nature, Nature, vol. 520(7547), pages 324-328, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    2. Lennart Petersen & Florin Iov & German Claudio Tarnowski & Vahan Gevorgian & Przemyslaw Koralewicz & Daniel-Ioan Stroe, 2019. "Validating Performance Models for Hybrid Power Plant Control Assessment," Energies, MDPI, vol. 12(22), pages 1-26, November.
    3. Donghun Wang & Jihwan Hwang & Jonghyun Lee & Minchan Kim & Insoo Lee, 2023. "Temperature-Based State-of-Charge Estimation Using Neural Networks, Gradient Boosting Machine and a Jetson Nano Device for Batteries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    4. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Ramesh Kumar Chidambaram & Dipankar Chatterjee & Barnali Barman & Partha Pratim Das & Dawid Taler & Jan Taler & Tomasz Sobota, 2023. "Effect of Regenerative Braking on Battery Life," Energies, MDPI, vol. 16(14), pages 1-24, July.
    6. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost," Energies, MDPI, vol. 15(15), pages 1-17, July.
    7. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    8. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    10. Ahmed, Mostafa Shaban & Raihan, Sheikh Arif & Balasingam, Balakumar, 2020. "A scaling approach for improved state of charge representation in rechargeable batteries," Applied Energy, Elsevier, vol. 267(C).
    11. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    12. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    13. Maheshwari, A. & Nageswari, S., 2022. "Real-time state of charge estimation for electric vehicle power batteries using optimized filter," Energy, Elsevier, vol. 254(PB).
    14. Yi, Yahui & Xia, Chengyu & Shi, Lei & Meng, Leifeng & Chi, Qifu & Qian, Liqin & Ma, Tiancai & Chen, Siqi, 2024. "Lithium-ion battery expansion mechanism and Gaussian process regression based state of charge estimation with expansion characteristics," Energy, Elsevier, vol. 292(C).
    15. Shixin Wang & Yuan Guo & Xianfeng Du & Lilong Xiong & Zhongshuai Liang & Mingbo Ma & Yuehong Xie & Wenzhi You & Yi Meng & Yifan Liu & Mingxia Liu, 2024. "Preferred crystal plane electrodeposition of aluminum anode with high lattice-matching for long-life aluminum batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Gutiérrez-Arnillas, Esther & Álvarez, María S. & Deive, Francisco J. & Rodríguez, Ana & Sanromán, M. Ángeles, 2016. "New horizons in the enzymatic production of biodiesel using neoteric solvents," Renewable Energy, Elsevier, vol. 98(C), pages 92-100.
    17. Shuo Jin & Jiefu Yin & Xiaosi Gao & Arpita Sharma & Pengyu Chen & Shifeng Hong & Qing Zhao & Jingxu Zheng & Yue Deng & Yong Lak Joo & Lynden A. Archer, 2022. "Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Yang, Bowen & Wang, Dafang & Yu, Beike & Wang, Facheng & Chen, Shiqin & Sun, Xu & Dong, Haosong, 2024. "Research on online passive electrochemical impedance spectroscopy and its outlook in battery management," Applied Energy, Elsevier, vol. 363(C).
    19. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Ruifeng Zhang & Bizhong Xia & Baohua Li & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "Study on the Characteristics of a High Capacity Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion Battery—An Experimental Investigation," Energies, MDPI, vol. 11(9), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4270-:d:1153711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.