IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4270-d1153711.html
   My bibliography  Save this article

Experimental Study on Temperature Sensitivity of the State of Charge of Aluminum Battery Storage System

Author

Listed:
  • Bin-Hao Chen

    (Department of Vehicle Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei City 10608, Taiwan)

  • Chen-Hsiang Hsieh

    (Department of Vehicle Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei City 10608, Taiwan)

  • Li-Tao Teng

    (Green Energy and Environment Research Laboratory, Industrial Technology Research Institute, Tainan City 711010, Taiwan)

  • Chien-Chung Huang

    (Green Energy and Environment Research Laboratory, Industrial Technology Research Institute, Tainan City 711010, Taiwan)

Abstract

The operating temperature of a battery energy storage system (BESS) has a significant impact on battery performance, such as safety, state of charge (SOC), and cycle life. For weather-resistant aluminum batteries (AlBs), the precision of the SOC is sensitive to temperature variation, and errors in the SOC of AlBs may occur. In this study, a combination of the experimental charge/discharge data and a 3D anisotropic homogeneous (Ani-hom) transient heat transfer simulation is performed to understand the thermal effect of a novel battery system, say an aluminum-ion battery. The study conducts a turbulence fluid dynamics method to solve the temperature distribution of the battery rack, and the entropy generation method analyzes the heat generation of AlB during the charging/discharging process. The AlB is modeled by a second-order Thevenin equivalent circuit to estimate the status of the battery. An extended Kalman filter is applied to obtain the accurate SOC for monitoring the battery cell. The current study conducts the Galvanostatic Intermittent Titration Technique (GITT) on aluminum-ion batteries under different operation temperatures: 25 °C, 40 °C, 60 °C, and 80 °C. According to the sensitivity analysis of the SOC, the temperature sensitivity tends to or greater than one, S T ≥ 1 , while the operation temperature is above 40 °C, and the SOC modification of EKF tmep estimator improves the battery state of charge in the error range below 1%.

Suggested Citation

  • Bin-Hao Chen & Chen-Hsiang Hsieh & Li-Tao Teng & Chien-Chung Huang, 2023. "Experimental Study on Temperature Sensitivity of the State of Charge of Aluminum Battery Storage System," Energies, MDPI, vol. 16(11), pages 1-30, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4270-:d:1153711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng-Chang Lin & Ming Gong & Bingan Lu & Yingpeng Wu & Di-Yan Wang & Mingyun Guan & Michael Angell & Changxin Chen & Jiang Yang & Bing-Joe Hwang & Hongjie Dai, 2015. "An ultrafast rechargeable aluminium-ion battery," Nature, Nature, vol. 520(7547), pages 324-328, April.
    2. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossam M. Hussein & Ahmed Aghmadi & Mahmoud S. Abdelrahman & S M Sajjad Hossain Rafin & Osama Mohammed, 2024. "A review of battery state of charge estimation and management systems: Models and future prospective," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(1), January.
    2. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    3. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    4. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    5. Maheshwari, A. & Nageswari, S., 2022. "Real-time state of charge estimation for electric vehicle power batteries using optimized filter," Energy, Elsevier, vol. 254(PB).
    6. Yi, Yahui & Xia, Chengyu & Shi, Lei & Meng, Leifeng & Chi, Qifu & Qian, Liqin & Ma, Tiancai & Chen, Siqi, 2024. "Lithium-ion battery expansion mechanism and Gaussian process regression based state of charge estimation with expansion characteristics," Energy, Elsevier, vol. 292(C).
    7. Shixin Wang & Yuan Guo & Xianfeng Du & Lilong Xiong & Zhongshuai Liang & Mingbo Ma & Yuehong Xie & Wenzhi You & Yi Meng & Yifan Liu & Mingxia Liu, 2024. "Preferred crystal plane electrodeposition of aluminum anode with high lattice-matching for long-life aluminum batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Yang, Bowen & Wang, Dafang & Yu, Beike & Wang, Facheng & Chen, Shiqin & Sun, Xu & Dong, Haosong, 2024. "Research on online passive electrochemical impedance spectroscopy and its outlook in battery management," Applied Energy, Elsevier, vol. 363(C).
    9. Xiao, Jie & Xiong, Yonglian & Zhu, Yucheng & Zhang, Chao & Yi, Ting & Qian, Xing & Fan, Yongsheng & Hou, Quanhui, 2024. "Multi-innovation adaptive Kalman filter algorithm for estimating the SOC of lithium-ion batteries based on singular value decomposition and Schmidt orthogonal transformation," Energy, Elsevier, vol. 312(C).
    10. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Eric L. Prentis, 2016. "Reconstructing Renewable Energy: Making Wind and Solar Power Dispatchable, Reliable and Efficient," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 128-133.
    12. Wei, Manhui & Wang, Keliang & Pei, Pucheng & Zuo, Yayu & Zhong, Liping & Shang, Nuo & Wang, Hengwei & Chen, Junfeng & Zhang, Pengfei & Chen, Zhuo, 2022. "An enhanced-performance Al-air battery optimizing the alkaline electrolyte with a strong Lewis acid ZnCl2," Applied Energy, Elsevier, vol. 324(C).
    13. Carola Leone & Laura Sturaro & Giacomo Geroli & Michela Longo & Wahiba Yaici, 2021. "Design and Implementation of an Electric Skibus Line in North Italy," Energies, MDPI, vol. 14(23), pages 1-22, November.
    14. Aleš Hace, 2019. "The Advanced Control Approach based on SMC Design for the High-Fidelity Haptic Power Lever of a Small Hybrid Electric Aircraft," Energies, MDPI, vol. 12(15), pages 1-31, August.
    15. Fangyan Cui & Jingzhen Li & Chen Lai & Changzhan Li & Chunhao Sun & Kai Du & Jinshu Wang & Hongyi Li & Aoming Huang & Shengjie Peng & Yuxiang Hu, 2024. "Superlattice cathodes endow cation and anion co-intercalation for high-energy-density aluminium batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Craig, Ben & Schoetz, Theresa & Cruden, Andrew & Ponce de Leon, Carlos, 2020. "Review of current progress in non-aqueous aluminium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Junli Deng & Yuan Mao & Yun Yang, 2020. "Distribution Power Loss Reduction of Standalone DC Microgrids Using Adaptive Differential Evolution-Based Control for Distributed Battery Systems," Energies, MDPI, vol. 13(9), pages 1-15, April.
    18. Bogdan Cristian Florea & Dragos Daniel Taralunga, 2020. "Blockchain IoT for Smart Electric Vehicles Battery Management," Sustainability, MDPI, vol. 12(10), pages 1-25, May.
    19. Saswati Sarmah & Lakhanlal & Biraj Kumar Kakati & Dhanapati Deka, 2023. "Recent advancement in rechargeable battery technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    20. Bizhong Xia & Rui Huang & Zizhou Lao & Ruifeng Zhang & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "Online Parameter Identification of Lithium-Ion Batteries Using a Novel Multiple Forgetting Factor Recursive Least Square Algorithm," Energies, MDPI, vol. 11(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4270-:d:1153711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.