IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29802-7.html
   My bibliography  Save this article

A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays

Author

Listed:
  • Christian Becker

    (Chemnitz University of Technology
    Leibniz IFW Dresden
    Chemnitz University of Technology)

  • Bin Bao

    (Leibniz IFW Dresden)

  • Dmitriy D. Karnaushenko

    (Chemnitz University of Technology
    Leibniz IFW Dresden
    Chemnitz University of Technology)

  • Vineeth Kumar Bandari

    (Chemnitz University of Technology
    Chemnitz University of Technology)

  • Boris Rivkin

    (Leibniz IFW Dresden)

  • Zhe Li

    (Chemnitz University of Technology
    Chemnitz University of Technology)

  • Maryam Faghih

    (Leibniz IFW Dresden)

  • Daniil Karnaushenko

    (Chemnitz University of Technology
    Leibniz IFW Dresden
    Chemnitz University of Technology)

  • Oliver G. Schmidt

    (Chemnitz University of Technology
    Leibniz IFW Dresden
    Chemnitz University of Technology
    TU Dresden)

Abstract

Magnetic sensors are widely used in our daily life for assessing the position and orientation of objects. Recently, the magnetic sensing modality has been introduced to electronic skins (e-skins), enabling remote perception of moving objects. However, the integration density of magnetic sensors is limited and the vector properties of the magnetic field cannot be fully explored since the sensors can only perceive field components in one or two dimensions. Here, we report an approach to fabricate high-density integrated active matrix magnetic sensor with three-dimensional (3D) magnetic vector field sensing capability. The 3D magnetic sensor is composed of an array of self-assembled micro-origami cubic architectures with biased anisotropic magnetoresistance (AMR) sensors manufactured in a wafer-scale process. Integrating the 3D magnetic sensors into an e-skin with embedded magnetic hairs enables real-time multidirectional tactile perception. We demonstrate a versatile approach for the fabrication of active matrix integrated 3D sensor arrays using micro-origami and pave the way for new electronic devices relying on the autonomous rearrangement of functional elements in space.

Suggested Citation

  • Christian Becker & Bin Bao & Dmitriy D. Karnaushenko & Vineeth Kumar Bandari & Boris Rivkin & Zhe Li & Maryam Faghih & Daniil Karnaushenko & Oliver G. Schmidt, 2022. "A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29802-7
    DOI: 10.1038/s41467-022-29802-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29802-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29802-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hen-Wei Huang & Mahmut Selman Sakar & Andrew J. Petruska & Salvador Pané & Bradley J. Nelson, 2016. "Soft micromachines with programmable motility and morphology," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    2. Changsoon Choi & Moon Kee Choi & Siyi Liu & Minsung Kim & Ok Kyu Park & Changkyun Im & Jaemin Kim & Xiaoliang Qin & Gil Ju Lee & Kyoung Won Cho & Myungbin Kim & Eehyung Joh & Jongha Lee & Donghee Son , 2017. "Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    3. Mariana Medina-Sánchez & Oliver G. Schmidt, 2017. "Medical microbots need better imaging and control," Nature, Nature, vol. 545(7655), pages 406-408, May.
    4. Martin Kaltenbrunner & Tsuyoshi Sekitani & Jonathan Reeder & Tomoyuki Yokota & Kazunori Kuribara & Takeyoshi Tokuhara & Michael Drack & Reinhard Schwödiauer & Ingrid Graz & Simona Bauer-Gogonea & Sieg, 2013. "An ultra-lightweight design for imperceptible plastic electronics," Nature, Nature, vol. 499(7459), pages 458-463, July.
    5. Young Min Song & Yizhu Xie & Viktor Malyarchuk & Jianliang Xiao & Inhwa Jung & Ki-Joong Choi & Zhuangjian Liu & Hyunsung Park & Chaofeng Lu & Rak-Hwan Kim & Rui Li & Kenneth B. Crozier & Yonggang Huan, 2013. "Digital cameras with designs inspired by the arthropod eye," Nature, Nature, vol. 497(7447), pages 95-99, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenghao Long & Xiao Qiu & Chak Lam Jonathan Chan & Zhibo Sun & Zhengnan Yuan & Swapnadeep Poddar & Yuting Zhang & Yucheng Ding & Leilei Gu & Yu Zhou & Wenying Tang & Abhishek Kumar Srivastava & Cunji, 2023. "A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Oleksii M. Volkov & Oleksandr V. Pylypovskyi & Fabrizio Porrati & Florian Kronast & Jose A. Fernandez-Roldan & Attila Kákay & Alexander Kuprava & Sven Barth & Filipp N. Rybakov & Olle Eriksson & Sebas, 2024. "Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Bo Dai & Liang Zhang & Chenglong Zhao & Hunter Bachman & Ryan Becker & John Mai & Ziao Jiao & Wei Li & Lulu Zheng & Xinjun Wan & Tony Jun Huang & Songlin Zhuang & Dawei Zhang, 2021. "Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. John Jinwook Kim & Kojima Shuji & Jiawei Zheng & Xinjun He & Ahmad Sajjad & Hong Zhang & Haibin Su & Wallace C. H. Choy, 2024. "Tri-system integration in metal-oxide nanocomposites via in-situ solution-processed method for ultrathin flexible transparent electrodes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Kuo Lu & Jin Xie & Risen Wang & Lei Li & Wenzhe Li & Yuning Jiang, 2022. "A closed-loop intelligent adjustment of process parameters in precise and micro hot-embossing using an in-process optic detection," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2341-2355, December.
    8. Junhwan Choi & Changhyeon Lee & Chungryeol Lee & Hongkeun Park & Seung Min Lee & Chang-Hyun Kim & Hocheon Yoo & Sung Gap Im, 2022. "Vertically stacked, low-voltage organic ternary logic circuits including nonvolatile floating-gate memory transistors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Tian Zhang & Xin Guo & Pan Wang & Xinyi Fan & Zichen Wang & Yan Tong & Decheng Wang & Limin Tong & Linjun Li, 2024. "High performance artificial visual perception and recognition with a plasmon-enhanced 2D material neural network," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Elisa Donati & Giacomo Valle, 2024. "Neuromorphic hardware for somatosensory neuroprostheses," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Yufei Zhang & Qiuchun Lu & Jiang He & Zhihao Huo & Runhui Zhou & Xun Han & Mengmeng Jia & Caofeng Pan & Zhong Lin Wang & Junyi Zhai, 2023. "Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Dezhao Lin & Fan Yang & Di Gong & Ruihong Li, 2023. "Bio-inspired magnetic-driven folded diaphragm for biomimetic robot," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Fabrizio Antonio Viola & Jonathan Barsotti & Filippo Melloni & Guglielmo Lanzani & Yun-Hi Kim & Virgilio Mattoli & Mario Caironi, 2021. "A sub-150-nanometre-thick and ultraconformable solution-processed all-organic transistor," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Laliphat Manamanchaiyaporn & Tiantian Xu & Xinyu Wu, 2020. "An Optimal Design of an Electromagnetic Actuation System towards a Large Homogeneous Magnetic Field and Accessible Workspace for Magnetic Manipulation," Energies, MDPI, vol. 13(4), pages 1-24, February.
    15. Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Zhi-Yong Hu & Yong-Lai Zhang & Chong Pan & Jian-Yu Dou & Zhen-Ze Li & Zhen-Nan Tian & Jiang-Wei Mao & Qi-Dai Chen & Hong-Bo Sun, 2022. "Miniature optoelectronic compound eye camera," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Kunio Shimada & Hiroshige Kikura & Ryo Ikeda & Hideharu Takahashi, 2020. "Clarification of Catalytic Effect on Large Stretchable and Compressible Rubber Dye-Sensitized Solar Cells," Energies, MDPI, vol. 13(24), pages 1-29, December.
    18. Jia-Han Zhang & Zhengtong Li & Juan Xu & Jiean Li & Ke Yan & Wen Cheng & Ming Xin & Tangsong Zhu & Jinhua Du & Sixuan Chen & Xiaoming An & Zhou Zhou & Luyao Cheng & Shu Ying & Jing Zhang & Xingxun Gao, 2022. "Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Yingjie Tang & Peng Jin & Yan Wang & Dingwei Li & Yitong Chen & Peng Ran & Wei Fan & Kun Liang & Huihui Ren & Xuehui Xu & Rui Wang & Yang (Michael) Yang & Bowen Zhu, 2023. "Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Dazhi Wang & Liangkun Lu & Zhiyuan Zhao & Kuipeng Zhao & Xiangyu Zhao & Changchang Pu & Yikang Li & Pengfei Xu & Xiangji Chen & Yunlong Guo & Liujia Suo & Junsheng Liang & Yan Cui & Yunqi Liu, 2022. "Large area polymer semiconductor sub-microwire arrays by coaxial focused electrohydrodynamic jet printing for high-performance OFETs," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29802-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.