IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37581-y.html
   My bibliography  Save this article

A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina

Author

Listed:
  • Zhenghao Long

    (The Hong Kong University of Science and Technology
    HKUST
    HKUST)

  • Xiao Qiu

    (The Hong Kong University of Science and Technology
    HKUST
    HKUST)

  • Chak Lam Jonathan Chan

    (The Hong Kong University of Science and Technology)

  • Zhibo Sun

    (The Hong Kong University of Science and Technology
    HKUST)

  • Zhengnan Yuan

    (The Hong Kong University of Science and Technology
    HKUST)

  • Swapnadeep Poddar

    (The Hong Kong University of Science and Technology
    HKUST
    HKUST)

  • Yuting Zhang

    (The Hong Kong University of Science and Technology)

  • Yucheng Ding

    (The Hong Kong University of Science and Technology
    HKUST
    HKUST)

  • Leilei Gu

    (Shanghai Jiao Tong University)

  • Yu Zhou

    (The Hong Kong University of Science and Technology
    HKUST
    HKUST)

  • Wenying Tang

    (The Hong Kong University of Science and Technology)

  • Abhishek Kumar Srivastava

    (The Hong Kong University of Science and Technology
    HKUST)

  • Cunjiang Yu

    (Pennsylvania State University)

  • Xuming Zou

    (Hunan University)

  • Guozhen Shen

    (Beijing Institute of Technology)

  • Zhiyong Fan

    (The Hong Kong University of Science and Technology
    HKUST
    HKUST
    The Hong Kong University of Science and Technology)

Abstract

Spherical geometry, adaptive optics, and highly dense network of neurons bridging the eye with the visual cortex, are the primary features of human eyes which enable wide field-of-view (FoV), low aberration, excellent adaptivity, and preprocessing of perceived visual information. Therefore, fabricating spherical artificial eyes has garnered enormous scientific interest. However, fusing color vision, in-device preprocessing and optical adaptivity into spherical artificial eyes has always been a tremendous challenge. Herein, we demonstrate a bionic eye comprising tunable liquid crystal optics, and a hemispherical neuromorphic retina with filter-free color vision, enabled by wavelength dependent bidirectional synaptic photo-response in a metal-oxide nanotube/perovskite nanowire hybrid structure. Moreover, by tuning the color selectivity with bias, the device can reconstruct full color images. This work demonstrates a unique approach to address the color vision and optical adaptivity issues associated with artificial eyes that can bring them to a new level approaching their biological counterparts.

Suggested Citation

  • Zhenghao Long & Xiao Qiu & Chak Lam Jonathan Chan & Zhibo Sun & Zhengnan Yuan & Swapnadeep Poddar & Yuting Zhang & Yucheng Ding & Leilei Gu & Yu Zhou & Wenying Tang & Abhishek Kumar Srivastava & Cunji, 2023. "A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37581-y
    DOI: 10.1038/s41467-023-37581-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37581-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37581-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heung Cho Ko & Mark P. Stoykovich & Jizhou Song & Viktor Malyarchuk & Won Mook Choi & Chang-Jae Yu & Joseph B. Geddes III & Jianliang Xiao & Shuodao Wang & Yonggang Huang & John A. Rogers, 2008. "A hemispherical electronic eye camera based on compressible silicon optoelectronics," Nature, Nature, vol. 454(7205), pages 748-753, August.
    2. Woochul Kim & Hyeonghun Kim & Tae Jin Yoo & Jun Young Lee & Ji Young Jo & Byoung Hun Lee & Assa Aravindh Sasikala & Gun Young Jung & Yusin Pak, 2022. "Perovskite multifunctional logic gates via bipolar photoresponse of single photodetector," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Changsoon Choi & Moon Kee Choi & Siyi Liu & Minsung Kim & Ok Kyu Park & Changkyun Im & Jaemin Kim & Xiaoliang Qin & Gil Ju Lee & Kyoung Won Cho & Myungbin Kim & Eehyung Joh & Jongha Lee & Donghee Son , 2017. "Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    4. Mingyu Hu & Min Chen & Peijun Guo & Hua Zhou & Junjing Deng & Yudong Yao & Yi Jiang & Jue Gong & Zhenghong Dai & Yunxuan Zhou & Feng Qian & Xiaoyu Chong & Jing Feng & Richard D. Schaller & Kai Zhu & N, 2020. "Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Changsoon Choi & Juyoung Leem & Minsung Kim & Amir Taqieddin & Chullhee Cho & Kyoung Won Cho & Gil Ju Lee & Hyojin Seung & Hyung Jong Bae & Young Min Song & Taeghwan Hyeon & Narayana R. Aluru & SungWo, 2020. "Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Young Min Song & Yizhu Xie & Viktor Malyarchuk & Jianliang Xiao & Inhwa Jung & Ki-Joong Choi & Zhuangjian Liu & Hyunsung Park & Chaofeng Lu & Rak-Hwan Kim & Rui Li & Kenneth B. Crozier & Yonggang Huan, 2013. "Digital cameras with designs inspired by the arthropod eye," Nature, Nature, vol. 497(7447), pages 95-99, May.
    7. Kan Zhang & Yei Hwan Jung & Solomon Mikael & Jung-Hun Seo & Munho Kim & Hongyi Mi & Han Zhou & Zhenyang Xia & Weidong Zhou & Shaoqin Gong & Zhenqiang Ma, 2017. "Origami silicon optoelectronics for hemispherical electronic eye systems," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    8. Ardalan Armin & Ross D. Jansen-van Vuuren & Nikos Kopidakis & Paul L. Burn & Paul Meredith, 2015. "Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    9. Leilei Gu & Swapnadeep Poddar & Yuanjing Lin & Zhenghao Long & Daquan Zhang & Qianpeng Zhang & Lei Shu & Xiao Qiu & Matthew Kam & Ali Javey & Zhiyong Fan, 2020. "A biomimetic eye with a hemispherical perovskite nanowire array retina," Nature, Nature, vol. 581(7808), pages 278-282, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Dai & Liang Zhang & Chenglong Zhao & Hunter Bachman & Ryan Becker & John Mai & Ziao Jiao & Wei Li & Lulu Zheng & Xinjun Wan & Tony Jun Huang & Songlin Zhuang & Dawei Zhang, 2021. "Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Changsoon Choi & Henry Hinton & Hyojin Seung & Sehui Chang & Ji Su Kim & Woosang You & Min Sung Kim & Jung Pyo Hong & Jung Ah Lim & Do Kyung Hwang & Gil Ju Lee & Houk Jang & Young Min Song & Dae-Hyeon, 2024. "Anti-distortion bioinspired camera with an inhomogeneous photo-pixel array," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Xu Luo & Chen Chen & Zixi He & Min Wang & Keyuan Pan & Xuemei Dong & Zifan Li & Bin Liu & Zicheng Zhang & Yueyue Wu & Chaoyi Ban & Rong Chen & Dengfeng Zhang & Kaili Wang & Qiye Wang & Junyue Li & Gan, 2024. "A bionic self-driven retinomorphic eye with ionogel photosynaptic retina," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Chuanqian Shi & Jing Jiang & Chenglong Li & Chenhong Chen & Wei Jian & Jizhou Song, 2024. "Precision-induced localized molten liquid metal stamps for damage-free transfer printing of ultrathin membranes and 3D objects," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Yao Ma & Leting Shan & Yiran Ying & Liang Shen & Yufeng Fu & Linfeng Fei & Yusheng Lei & Nailin Yue & Wei Zhang & Hong Zhang & Haitao Huang & Kai Yao & Junhao Chu, 2024. "Day-Night imaging without Infrared Cutfilter removal based on metal-gradient perovskite single crystal photodetector," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Zhi-Yong Hu & Yong-Lai Zhang & Chong Pan & Jian-Yu Dou & Zhen-Ze Li & Zhen-Nan Tian & Jiang-Wei Mao & Qi-Dai Chen & Hong-Bo Sun, 2022. "Miniature optoelectronic compound eye camera," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Tian Zhang & Xin Guo & Pan Wang & Xinyi Fan & Zichen Wang & Yan Tong & Decheng Wang & Limin Tong & Linjun Li, 2024. "High performance artificial visual perception and recognition with a plasmon-enhanced 2D material neural network," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Seongchan Kim & Yoon Young Choi & Taewan Kim & Yong Min Kim & Dong Hae Ho & Young Jin Choi & Dong Gue Roe & Ju-Hee Lee & Joongpill Park & Ji-Woong Choi & Jeong Won Kim & Jin-Hong Park & Sae Byeok Jo &, 2022. "A biomimetic ocular prosthesis system: emulating autonomic pupil and corneal reflections," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Christian Becker & Bin Bao & Dmitriy D. Karnaushenko & Vineeth Kumar Bandari & Boris Rivkin & Zhe Li & Maryam Faghih & Daniil Karnaushenko & Oliver G. Schmidt, 2022. "A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Rui Xu & Zhiqiang Zeng & Yong Lei, 2022. "Well-defined nanostructuring with designable anodic aluminum oxide template," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Jonas Kublitski & Axel Fischer & Shen Xing & Lukasz Baisinger & Eva Bittrich & Donato Spoltore & Johannes Benduhn & Koen Vandewal & Karl Leo, 2021. "Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Pengshan Xie & Yunchao Xu & Jingwen Wang & Dengji Li & Yuxuan Zhang & Zixin Zeng & Boxiang Gao & Quan Quan & Bowen Li & You Meng & Weijun Wang & Yezhan Li & Yan Yan & Yi Shen & Jia Sun & Johnny C. Ho, 2024. "Birdlike broadband neuromorphic visual sensor arrays for fusion imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Ming Deng & Ziqing Li & Shiyuan Liu & Xiaosheng Fang & Limin Wu, 2024. "Wafer-scale integration of two-dimensional perovskite oxides towards motion recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. You Meng & Xiaocui Li & Xiaolin Kang & Wanpeng Li & Wei Wang & Zhengxun Lai & Weijun Wang & Quan Quan & Xiuming Bu & SenPo Yip & Pengshan Xie & Dong Chen & Dengji Li & Fei Wang & Chi-Fung Yeung & Chan, 2023. "Van der Waals nanomesh electronics on arbitrary surfaces," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Quan Liu & Stefan Zeiske & Xueshi Jiang & Derese Desta & Sigurd Mertens & Sam Gielen & Rachith Shanivarasanthe & Hans-Gerd Boyen & Ardalan Armin & Koen Vandewal, 2022. "Electron-donating amine-interlayer induced n-type doping of polymer:nonfullerene blends for efficient narrowband near-infrared photo-detection," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Chenhao Wang & Xinyi Xu & Xiaodong Pi & Mark D. Butala & Wen Huang & Lei Yin & Wenbing Peng & Munir Ali & Srikrishna Chanakya Bodepudi & Xvsheng Qiao & Yang Xu & Wei Sun & Deren Yang, 2022. "Neuromorphic device based on silicon nanosheets," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Ting Jiang & Yiru Wang & Yingshuang Zheng & Le Wang & Xiang He & Liqiang Li & Yunfeng Deng & Huanli Dong & Hongkun Tian & Yanhou Geng & Linghai Xie & Yong Lei & Haifeng Ling & Deyang Ji & Wenping Hu, 2023. "Tetrachromatic vision-inspired neuromorphic sensors with ultraweak ultraviolet detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Sujin Jeong & Hyungsoo Yoon & Lukas Felix Michalek & Geonhee Kim & Jinhyoung Kim & Jiseok Seo & Dahyun Kim & Hwaeun Park & Byeongmoon Lee & Yongtaek Hong, 2024. "Printable, stretchable metal-vapor-desorption layers for high-fidelity patterning in soft, freeform electronics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37581-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.