IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46403-8.html
   My bibliography  Save this article

Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes

Author

Listed:
  • Oleksii M. Volkov

    (Institute of Ion Beam Physics and Materials Research)

  • Oleksandr V. Pylypovskyi

    (Institute of Ion Beam Physics and Materials Research
    Kyiv Academic University)

  • Fabrizio Porrati

    (Johann Wolfgang Goethe-Universität Frankfurt am Main)

  • Florian Kronast

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

  • Jose A. Fernandez-Roldan

    (Institute of Ion Beam Physics and Materials Research)

  • Attila Kákay

    (Institute of Ion Beam Physics and Materials Research)

  • Alexander Kuprava

    (Johann Wolfgang Goethe-Universität Frankfurt am Main)

  • Sven Barth

    (Johann Wolfgang Goethe-Universität Frankfurt am Main)

  • Filipp N. Rybakov

    (Uppsala University)

  • Olle Eriksson

    (Uppsala University
    Uppsala University)

  • Sebastian Lamb-Camarena

    (Superconductivity and Spintronics Laboratory
    Vienna Doctoral School in Physics)

  • Pavlo Makushko

    (Institute of Ion Beam Physics and Materials Research)

  • Mohamad-Assaad Mawass

    (Helmholtz-Zentrum Berlin für Materialien und Energie
    Fritz-Haber-Institut der Max-Planck-Gesellschaft)

  • Shahrukh Shakeel

    (Institute of Ion Beam Physics and Materials Research)

  • Oleksandr V. Dobrovolskiy

    (Superconductivity and Spintronics Laboratory)

  • Michael Huth

    (Johann Wolfgang Goethe-Universität Frankfurt am Main)

  • Denys Makarov

    (Institute of Ion Beam Physics and Materials Research)

Abstract

Additive nanotechnology enable curvilinear and three-dimensional (3D) magnetic architectures with tunable topology and functionalities surpassing their planar counterparts. Here, we experimentally reveal that 3D soft magnetic wireframe structures resemble compact manifolds and accommodate magnetic textures of high order vorticity determined by the Euler characteristic, χ. We demonstrate that self-standing magnetic tetrapods (homeomorphic to a sphere; χ = + 2) support six surface topological solitons, namely four vortices and two antivortices, with a total vorticity of + 2 equal to its Euler characteristic. Alternatively, wireframe structures with one loop (homeomorphic to a torus; χ = 0) possess equal number of vortices and antivortices, which is relevant for spin-wave splitters and 3D magnonics. Subsequent introduction of n holes into the wireframe geometry (homeomorphic to an n-torus; χ

Suggested Citation

  • Oleksii M. Volkov & Oleksandr V. Pylypovskyi & Fabrizio Porrati & Florian Kronast & Jose A. Fernandez-Roldan & Attila Kákay & Alexander Kuprava & Sven Barth & Filipp N. Rybakov & Olle Eriksson & Sebas, 2024. "Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46403-8
    DOI: 10.1038/s41467-024-46403-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46403-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46403-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mariana Medina-Sánchez & Oliver G. Schmidt, 2017. "Medical microbots need better imaging and control," Nature, Nature, vol. 545(7655), pages 406-408, May.
    2. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    3. Oleksii M. Volkov & Daniel Wolf & Oleksandr V. Pylypovskyi & Attila Kákay & Denis D. Sheka & Bernd Büchner & Jürgen Fassbender & Axel Lubk & Denys Makarov, 2023. "Chirality coupling in topological magnetic textures with multiple magnetochiral parameters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. S. T. Bramwell & S. R. Giblin & S. Calder & R. Aldus & D. Prabhakaran & T. Fennell, 2009. "Measurement of the charge and current of magnetic monopoles in spin ice," Nature, Nature, vol. 461(7266), pages 956-959, October.
    5. Ádám Papp & Wolfgang Porod & Gyorgy Csaba, 2021. "Nanoscale neural network using non-linear spin-wave interference," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Wooik Jung & Yoon-Ho Jung & Peter V. Pikhitsa & Jicheng Feng & Younghwan Yang & Minkyung Kim & Hao-Yuan Tsai & Takuo Tanaka & Jooyeon Shin & Kwang-Yeong Kim & Hoseop Choi & Junsuk Rho & Mansoo Choi, 2021. "Three-dimensional nanoprinting via charged aerosol jets," Nature, Nature, vol. 592(7852), pages 54-59, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Merbouche & B. Divinskiy & D. Gouéré & R. Lebrun & A. El Kanj & V. Cros & P. Bortolotti & A. Anane & S. O. Demokritov & V. E. Demidov, 2024. "True amplification of spin waves in magnonic nano-waveguides," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Xing Chen & Flavio Abreu Araujo & Mathieu Riou & Jacob Torrejon & Dafiné Ravelosona & Wang Kang & Weisheng Zhao & Julie Grollier & Damien Querlioz, 2022. "Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Liang Yang & Hongrong Hu & Alexander Scholz & Florian Feist & Gabriel Cadilha Marques & Steven Kraus & Niklas Maximilian Bojanowski & Eva Blasco & Christopher Barner-Kowollik & Jasmin Aghassi-Hagmann , 2023. "Laser printed microelectronics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yiming Sun & Tao Lin & Na Lei & Xing Chen & Wang Kang & Zhiyuan Zhao & Dahai Wei & Chao Chen & Simin Pang & Linglong Hu & Liu Yang & Enxuan Dong & Li Zhao & Lei Liu & Zhe Yuan & Aladin Ullrich & Chris, 2023. "Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Takaaki Dohi & Markus Weißenhofer & Nico Kerber & Fabian Kammerbauer & Yuqing Ge & Klaus Raab & Jakub Zázvorka & Maria-Andromachi Syskaki & Aga Shahee & Moritz Ruhwedel & Tobias Böttcher & Philipp Pir, 2023. "Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Lukas Körber & Christopher Heins & Tobias Hula & Joo-Von Kim & Sonia Thlang & Helmut Schultheiss & Jürgen Fassbender & Katrin Schultheiss, 2023. "Pattern recognition in reciprocal space with a magnon-scattering reservoir," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Christian Becker & Bin Bao & Dmitriy D. Karnaushenko & Vineeth Kumar Bandari & Boris Rivkin & Zhe Li & Maryam Faghih & Daniil Karnaushenko & Oliver G. Schmidt, 2022. "A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. J. Guo & P. Ghosh & D. Hill & Y. Chen & L. Stingaciu & P. Zolnierczuk & C. A. Ullrich & D. K. Singh, 2023. "Persistent dynamic magnetic state in artificial honeycomb spin ice," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    9. Davide Girardi & Simone Finizio & Claire Donnelly & Guglielmo Rubini & Sina Mayr & Valerio Levati & Simone Cuccurullo & Federico Maspero & Jörg Raabe & Daniela Petti & Edoardo Albisetti, 2024. "Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Bingyan Liu & Shirong Liu & Vasanthan Devaraj & Yuxiang Yin & Yueqi Zhang & Jingui Ai & Yaochen Han & Jicheng Feng, 2023. "Metal 3D nanoprinting with coupled fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Korbinian Baumgaertl & Dirk Grundler, 2023. "Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46403-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.