IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52840-2.html
   My bibliography  Save this article

Wafer-scale integration of two-dimensional perovskite oxides towards motion recognition

Author

Listed:
  • Ming Deng

    (Fudan University)

  • Ziqing Li

    (Fudan University)

  • Shiyuan Liu

    (Fudan University)

  • Xiaosheng Fang

    (Fudan University
    Fudan University)

  • Limin Wu

    (Fudan University
    Inner Mongolia University)

Abstract

Two-dimensional semiconductors have shown great potential for the development of advanced intelligent optoelectronic systems. Among them, two-dimensional perovskite oxides with compelling optoelectronic performance have been thriving in high-performance photodetection. However, harsh synthesis and defect chemistry severely limit their overall performance and further large-scale heterogeneous integration. Here, we report the wafer-scale integration of highly oriented nanosheets by introducing a charge-assisted oriented assembly film-formation process and confirm its universality and scalability. The shallow-trap dominance induced by structural optimization endows the device with a distinguished performance balance, including high photosensitivity close to that of single nanosheet units and fast response speed. An integrated ultra-flexible 256-pixel device demonstrates the versatility of material-to-substrate integration and conformal imaging functionality. Moreover, the device achieves efficient recognition of multidirectional motion trajectories with an accuracy of over 99.8%. Our work provides prescient insights into the large-area fabrication and utilization of 2D perovskite oxides in advanced optoelectronics.

Suggested Citation

  • Ming Deng & Ziqing Li & Shiyuan Liu & Xiaosheng Fang & Limin Wu, 2024. "Wafer-scale integration of two-dimensional perovskite oxides towards motion recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52840-2
    DOI: 10.1038/s41467-024-52840-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52840-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52840-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seokhyeong Lee & Ruoming Peng & Changming Wu & Mo Li, 2022. "Programmable black phosphorus image sensor for broadband optoelectronic edge computing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Changsoon Choi & Moon Kee Choi & Siyi Liu & Minsung Kim & Ok Kyu Park & Changkyun Im & Jaemin Kim & Xiaoliang Qin & Gil Ju Lee & Kyoung Won Cho & Myungbin Kim & Eehyung Joh & Jongha Lee & Donghee Son , 2017. "Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    3. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Yang Gao & Zhibo Liu & Dong-Ming Sun & Le Huang & Lai-Peng Ma & Li-Chang Yin & Teng Ma & Zhiyong Zhang & Xiu-Liang Ma & Lian-Mao Peng & Hui-Ming Cheng & Wencai Ren, 2015. "Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    5. Lukas Mennel & Joanna Symonowicz & Stefan Wachter & Dmitry K. Polyushkin & Aday J. Molina-Mendoza & Thomas Mueller, 2020. "Ultrafast machine vision with 2D material neural network image sensors," Nature, Nature, vol. 579(7797), pages 62-66, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuyan Zhu & Yang Wang & Xingchen Pang & Yongbo Jiang & Xiaoxian Liu & Qing Li & Zhen Wang & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zhuiri Peng & Lei Tong & Wenhao Shi & Langlang Xu & Xinyu Huang & Zheng Li & Xiangxiang Yu & Xiaohan Meng & Xiao He & Shengjie Lv & Gaochen Yang & Hao Hao & Tian Jiang & Xiangshui Miao & Lei Ye, 2024. "Multifunctional human visual pathway-replicated hardware based on 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Lei Xu & Junling Liu & Xinrui Guo & Shuo Liu & Xilin Lai & Jingyue Wang & Mengshi Yu & Zhengdao Xie & Hailin Peng & Xuming Zou & Xinran Wang & Ru Huang & Ming He, 2024. "Ultrasensitive dim-light neuromorphic vision sensing via momentum-conserved reconfigurable van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Tian Zhang & Xin Guo & Pan Wang & Xinyi Fan & Zichen Wang & Yan Tong & Decheng Wang & Limin Tong & Linjun Li, 2024. "High performance artificial visual perception and recognition with a plasmon-enhanced 2D material neural network," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Hao Jiang & Yinzhu Chen & Wenyu Guo & Yan Zhang & Rigui Zhou & Mile Gu & Fan Zhong & Zhenhua Ni & Junpeng Lu & Cheng-Wei Qiu & Weibo Gao, 2024. "Metasurface-enabled broadband multidimensional photodetectors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Dohyun Kwak & Dmitry K. Polyushkin & Thomas Mueller, 2023. "In-sensor computing using a MoS2 photodetector with programmable spectral responsivity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Changsoon Choi & Henry Hinton & Hyojin Seung & Sehui Chang & Ji Su Kim & Woosang You & Min Sung Kim & Jung Pyo Hong & Jung Ah Lim & Do Kyung Hwang & Gil Ju Lee & Houk Jang & Young Min Song & Dae-Hyeon, 2024. "Anti-distortion bioinspired camera with an inhomogeneous photo-pixel array," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Tao Guo & Shasha Li & Y. Norman Zhou & Wei D. Lu & Yong Yan & Yimin A. Wu, 2024. "Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Zhenghao Long & Xiao Qiu & Chak Lam Jonathan Chan & Zhibo Sun & Zhengnan Yuan & Swapnadeep Poddar & Yuting Zhang & Yucheng Ding & Leilei Gu & Yu Zhou & Wenying Tang & Abhishek Kumar Srivastava & Cunji, 2023. "A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Junxiong Guo & Shuyi Gu & Lin Lin & Yu Liu & Ji Cai & Hongyi Cai & Yu Tian & Yuelin Zhang & Qinghua Zhang & Ze Liu & Yafei Zhang & Xiaosheng Zhang & Yuan Lin & Wen Huang & Lin Gu & Jinxing Zhang, 2024. "Type-printable photodetector arrays for multichannel meta-infrared imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Ling Li & Shasha Li & Wenhai Wang & Jielian Zhang & Yiming Sun & Qunrui Deng & Tao Zheng & Jianting Lu & Wei Gao & Mengmeng Yang & Hanyu Wang & Yuan Pan & Xueting Liu & Yani Yang & Jingbo Li & Nengjie, 2024. "Adaptative machine vision with microsecond-level accurate perception beyond human retina," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Xinxin Gao & Ze Gu & Qian Ma & Bao Jie Chen & Kam-Man Shum & Wen Yi Cui & Jian Wei You & Tie Jun Cui & Chi Hou Chan, 2024. "Terahertz spoof plasmonic neural network for diffractive information recognition and processing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    17. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Xingchen Pang & Yang Wang & Yuyan Zhu & Zhenhan Zhang & Du Xiang & Xun Ge & Haoqi Wu & Yongbo Jiang & Zizheng Liu & Xiaoxian Liu & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Haihui Lan & Luyang Wang & Runze He & Shuyi Huang & Jinqiu Yu & Jinming Guo & Jingrui Luo & Yiling Li & Jinyang Zhang & Jiaxin Lin & Shunping Zhang & Mengqi Zeng & Lei Fu, 2023. "2D quasi-layered material with domino structure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Xiaopeng Feng & Chenglong Li & Jinmei Song & Yuhong He & Wei Qu & Weijun Li & Keke Guo & Lulu Liu & Bai Yang & Haotong Wei, 2024. "Differential perovskite hemispherical photodetector for intelligent imaging and location tracking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52840-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.