IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52754-z.html
   My bibliography  Save this article

Magnetic augmentation through multi-gradient coupling enables direct and programmable profiling of circulating biomarkers

Author

Listed:
  • Yuan Chen

    (National University of Singapore
    National University of Singapore)

  • Li Zhang

    (National University of Singapore
    National University of Singapore)

  • Xingjie Wu

    (National University of Singapore)

  • Xuecheng Sun

    (National University of Singapore)

  • Noah R. Sundah

    (National University of Singapore
    National University of Singapore)

  • Chi Yan Wong

    (National University of Singapore
    National University of Singapore)

  • Auginia Natalia

    (National University of Singapore
    National University of Singapore)

  • John K. C. Tam

    (National University of Singapore)

  • Darren Wan-Teck Lim

    (National Cancer Centre Singapore
    Technology and Research
    Duke-NUS Medical School)

  • Balram Chowbay

    (Duke-NUS Medical School
    National Cancer Centre Singapore
    Technology and Research)

  • Beng Ti Ang

    (National Neuroscience Institute
    Duke-NUS Medical School)

  • Carol Tang

    (National Neuroscience Institute
    Duke-NUS Medical School
    Innovation)

  • Tze Ping Loh

    (National University of Singapore
    National University Hospital)

  • Huilin Shao

    (National University of Singapore
    National University of Singapore
    National University of Singapore
    Technology and Research)

Abstract

Conventional magnetic biosensing technologies have reduced analytical capacity for magnetic field dimensionality and require extensive sample processing. To address these challenges, we spatially engineer 3D magnetic response gradients for direct and programmable molecular detection in native biofluids. Named magnetic augmentation through triple-gradient coupling for high-performance detection (MATCH), the technology comprises gradient-distributed magnetic nanoparticles encapsulated within responsive hydrogel pillars and suspended above a magnetic sensor array. This configuration enables multi-gradient matching to achieve optimal magnetic activation, response and transduction, respectively. Through focused activation by target biomarkers, the platform preferentially releases sensor-proximal nanoparticles, generating response gradients that complement the sensor’s intrinsic detection capability. By implementing an upstream module that recognizes different biomarkers and releases universal activation molecules, the technology achieves programmable detection of various circulating biomarkers in native plasma. It bypasses conventional magnetic labeling, completes in

Suggested Citation

  • Yuan Chen & Li Zhang & Xingjie Wu & Xuecheng Sun & Noah R. Sundah & Chi Yan Wong & Auginia Natalia & John K. C. Tam & Darren Wan-Teck Lim & Balram Chowbay & Beng Ti Ang & Carol Tang & Tze Ping Loh & H, 2024. "Magnetic augmentation through multi-gradient coupling enables direct and programmable profiling of circulating biomarkers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52754-z
    DOI: 10.1038/s41467-024-52754-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52754-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52754-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Dong & Yun-Jun Xu & Cong Sui & Yang Zhao & Li-Bo Mao & Denis Gebauer & Rose Rosenberg & Jonathan Avaro & Ya-Dong Wu & Huai-Ling Gao & Zhao Pan & Hui-Qin Wen & Xu Yan & Fei Li & Yang Lu & Helmut , 2022. "Highly hydrated paramagnetic amorphous calcium carbonate nanoclusters as an MRI contrast agent," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Christian Becker & Bin Bao & Dmitriy D. Karnaushenko & Vineeth Kumar Bandari & Boris Rivkin & Zhe Li & Maryam Faghih & Daniil Karnaushenko & Oliver G. Schmidt, 2022. "A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Jin Ge & Xu Wang & Michael Drack & Oleksii Volkov & Mo Liang & Gilbert Santiago Cañón Bermúdez & Rico Illing & Changan Wang & Shengqiang Zhou & Jürgen Fassbender & Martin Kaltenbrunner & Denys Makarov, 2019. "A bimodal soft electronic skin for tactile and touchless interaction in real time," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Libing Zhang & Sae Rin Jean & Sharif Ahmed & Peter M. Aldridge & Xiyan Li & Fengjia Fan & Edward H. Sargent & Shana O. Kelley, 2017. "Multifunctional quantum dot DNA hydrogels," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    5. Yan Zhang & Chi Yan Wong & Carine Z. J. Lim & Qingchang Chen & Zhonglang Yu & Auginia Natalia & Zhigang Wang & Qing You Pang & See Wee Lim & Tze Ping Loh & Beng Ti Ang & Carol Tang & Huilin Shao, 2023. "Multiplexed RNA profiling by regenerative catalysis enables blood-based subtyping of brain tumors," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo Li & Yong Zhang & Xiaoping Liang & Haomin Wang & Haojie Lu & Mengjia Zhu & Huimin Wang & Mingchao Zhang & Xinping Qiu & Yafeng Song & Yingying Zhang, 2022. "Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jinrong Wang & Weibin Lin & Zhuo Chen & Valeriia O. Nikolaeva & Lukman O. Alimi & Niveen M. Khashab, 2024. "Smart touchless human–machine interaction based on crystalline porous cages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Shun An & Hanrui Zhu & Chunzhi Guo & Benwei Fu & Chengyi Song & Peng Tao & Wen Shang & Tao Deng, 2022. "Noncontact human-machine interaction based on hand-responsive infrared structural color," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Jinhui Zhang & Haimin Yao & Jiaying Mo & Songyue Chen & Yu Xie & Shenglin Ma & Rui Chen & Tao Luo & Weisong Ling & Lifeng Qin & Zuankai Wang & Wei Zhou, 2022. "Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Wenbo Liu & Youning Duo & Jiaqi Liu & Feiyang Yuan & Lei Li & Luchen Li & Gang Wang & Bohan Chen & Siqi Wang & Hui Yang & Yuchen Liu & Yanru Mo & Yun Wang & Bin Fang & Fuchun Sun & Xilun Ding & Chi Zh, 2022. "Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Sijia Xu & Jie-Xiang Yu & Hongshuang Guo & Shu Tian & You Long & Jing Yang & Lei Zhang, 2023. "Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52754-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.