IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29750-2.html
   My bibliography  Save this article

Subthalamic nucleus stabilizes movements by reducing neural spike variability in monkey basal ganglia

Author

Listed:
  • Taku Hasegawa

    (National Institute for Physiological Sciences)

  • Satomi Chiken

    (National Institute for Physiological Sciences
    SOKENDAI)

  • Kenta Kobayashi

    (SOKENDAI
    Section of Viral Vector Development, National Institute for Physiological Sciences)

  • Atsushi Nambu

    (National Institute for Physiological Sciences
    SOKENDAI
    Section of Viral Vector Development, National Institute for Physiological Sciences)

Abstract

The subthalamic nucleus projects to the external and internal pallidum, the modulatory and output nuclei of the basal ganglia, respectively, and plays an indispensable role in controlling voluntary movements. However, the precise mechanism by which the subthalamic nucleus controls pallidal activity and movements remains elusive. Here, we utilize chemogenetics to reversibly reduce neural activity of the motor subregion of the subthalamic nucleus in three macaque monkeys (Macaca fuscata, both sexes) during a reaching task. Systemic administration of chemogenetic ligands prolongs movement time and increases spike train variability in the pallidum, but only slightly affects firing rate modulations. Across-trial analyses reveal that the irregular discharges in the pallidum coincides with prolonged movement time. Reduction of subthalamic activity also induces excessive abnormal movements in the contralateral forelimb, which are preceded by subthalamic and pallidal phasic activity changes. Our results suggest that the subthalamic nucleus stabilizes pallidal spike trains and achieves stable movements.

Suggested Citation

  • Taku Hasegawa & Satomi Chiken & Kenta Kobayashi & Atsushi Nambu, 2022. "Subthalamic nucleus stabilizes movements by reducing neural spike variability in monkey basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29750-2
    DOI: 10.1038/s41467-022-29750-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29750-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29750-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dietmar Plenz & Stephen T. Kital, 1999. "A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus," Nature, Nature, vol. 400(6745), pages 677-682, August.
    2. Jeremiah Y. Cohen & Sebastian Haesler & Linh Vong & Bradford B. Lowell & Naoshige Uchida, 2012. "Neuron-type-specific signals for reward and punishment in the ventral tegmental area," Nature, Nature, vol. 482(7383), pages 85-88, February.
    3. Deniz Atasoy & J. Nicholas Betley & Helen H. Su & Scott M. Sternson, 2012. "Deconstruction of a neural circuit for hunger," Nature, Nature, vol. 488(7410), pages 172-177, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catherine Elorette & Atsushi Fujimoto & Frederic M. Stoll & Satoka H. Fujimoto & Niranjana Bienkowska & Liza London & Lazar Fleysher & Brian E. Russ & Peter H. Rudebeck, 2024. "The neural basis of resting-state fMRI functional connectivity in fronto-limbic circuits revealed by chemogenetic manipulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panna Hegedüs & Bálint Király & Dániel Schlingloff & Victoria Lyakhova & Anna Velencei & Írisz Szabó & Márton I. Mayer & Zsofia Zelenak & Gábor Nyiri & Balázs Hangya, 2024. "Parvalbumin-expressing basal forebrain neurons mediate learning from negative experience," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Hong Yu & Xinkuan Xiang & Zongming Chen & Xu Wang & Jiaqi Dai & Xinxin Wang & Pengcheng Huang & Zheng-dong Zhao & Wei L. Shen & Haohong Li, 2021. "Periaqueductal gray neurons encode the sequential motor program in hunting behavior of mice," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Roberto Luca & Stefano Nardone & Kevin P. Grace & Anne Venner & Michela Cristofolini & Sathyajit S. Bandaru & Lauren T. Sohn & Dong Kong & Takatoshi Mochizuki & Bianca Viberti & Lin Zhu & Antonino Zit, 2022. "Orexin neurons inhibit sleep to promote arousal," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Bernard Bloem & Rafiq Huda & Ken-ichi Amemori & Alex S. Abate & Gayathri Krishna & Anna L. Wilson & Cody W. Carter & Mriganka Sur & Ann M. Graybiel, 2022. "Multiplexed action-outcome representation by striatal striosome-matrix compartments detected with a mouse cost-benefit foraging task," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Torben Ott & Anna Marlina Stein & Andreas Nieder, 2023. "Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Louisa E. Linders & Lefkothea Patrikiou & Mariano Soiza-Reilly & Evelien H. S. Schut & Bram F. Schaffelaar & Leonard Böger & Inge G. Wolterink-Donselaar & Mieneke C. M. Luijendijk & Roger A. H. Adan &, 2022. "Stress-driven potentiation of lateral hypothalamic synapses onto ventral tegmental area dopamine neurons causes increased consumption of palatable food," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Stephan Dodt & Noah V. Widdershooven & Marie-Luise Dreisow & Lisa Weiher & Lukas Steuernagel & F. Thomas Wunderlich & Jens C. Brüning & Henning Fenselau, 2024. "NPY-mediated synaptic plasticity in the extended amygdala prioritizes feeding during starvation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Sanzeni, A. & Celani, A. & Tiana, G. & Vergassola, M., 2016. "Theory of feedback controlled brain stimulations for Parkinson’s disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 121-130.
    10. Yu, Ying & Zhang, Honghui & Zhang, Liyuan & Wang, Qingyun, 2019. "Dynamical role of pedunculopntine nucleus stimulation on controlling Parkinson’s disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 834-848.
    11. Lior Tiroshi & Joshua A Goldberg, 2019. "Population dynamics and entrainment of basal ganglia pacemakers are shaped by their dendritic arbors," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-29, February.
    12. Terence C. Burnham & Jay Phelan, 2020. "Ordinaries," Journal of Bioeconomics, Springer, vol. 22(2), pages 63-76, July.
    13. Athina Tzovara & Christoph W Korn & Dominik R Bach, 2018. "Human Pavlovian fear conditioning conforms to probabilistic learning," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-21, August.
    14. Huanyuan Zhou & KongFatt Wong-Lin & Da-Hui Wang, 2018. "Parallel Excitatory and Inhibitory Neural Circuit Pathways Underlie Reward-Based Phasic Neural Responses," Complexity, Hindawi, vol. 2018, pages 1-20, April.
    15. Rosalba Morese & Daniela Rabellino & Fabio Sambataro & Felice Perussia & Maria Consuelo Valentini & Bruno G Bara & Francesca M Bosco, 2016. "Group Membership Modulates the Neural Circuitry Underlying Third Party Punishment," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    16. Terence C. Burnham & Jay Phelan, 2021. "Ordinaries," Journal of Bioeconomics, Springer, vol. 23(2), pages 125-149, July.
    17. Rosalyn J Moran & Nicolas Mallet & Vladimir Litvak & Raymond J Dolan & Peter J Magill & Karl J Friston & Peter Brown, 2011. "Alterations in Brain Connectivity Underlying Beta Oscillations in Parkinsonism," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-15, August.
    18. Aki Takahashi & Romain Durand-de Cuttoli & Meghan E. Flanigan & Emi Hasegawa & Tomomi Tsunematsu & Hossein Aleyasin & Yoan Cherasse & Ken Miya & Takuya Okada & Kazuko Keino-Masu & Koshiro Mitsui & Lon, 2022. "Lateral habenula glutamatergic neurons projecting to the dorsal raphe nucleus promote aggressive arousal in mice," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Lizhu Li & Lihui Lu & Yuqi Ren & Guo Tang & Yu Zhao & Xue Cai & Zhao Shi & He Ding & Changbo Liu & Dali Cheng & Yang Xie & Huachun Wang & Xin Fu & Lan Yin & Minmin Luo & Xing Sheng, 2022. "Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Shaowen Qian & Sumei Yan & Ruiqi Pang & Jing Zhang & Kai Liu & Zhiyue Shi & Zhaoqun Wang & Penghui Chen & Yanjie Zhang & Tiantian Luo & Xianli Hu & Ying Xiong & Yi Zhou, 2022. "A temperature-regulated circuit for feeding behavior," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29750-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.