IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v482y2012i7383d10.1038_nature10754.html
   My bibliography  Save this article

Neuron-type-specific signals for reward and punishment in the ventral tegmental area

Author

Listed:
  • Jeremiah Y. Cohen

    (Center for Brain Science, Harvard University)

  • Sebastian Haesler

    (Center for Brain Science, Harvard University)

  • Linh Vong

    (Beth Israel Deaconess Medical Center, Harvard Medical School)

  • Bradford B. Lowell

    (Beth Israel Deaconess Medical Center, Harvard Medical School)

  • Naoshige Uchida

    (Center for Brain Science, Harvard University)

Abstract

Dopaminergic neurons in the mouse ventral tegmental area signal the difference between received and expected reward, whereas GABAergic neurons signal expected reward.

Suggested Citation

  • Jeremiah Y. Cohen & Sebastian Haesler & Linh Vong & Bradford B. Lowell & Naoshige Uchida, 2012. "Neuron-type-specific signals for reward and punishment in the ventral tegmental area," Nature, Nature, vol. 482(7383), pages 85-88, February.
  • Handle: RePEc:nat:nature:v:482:y:2012:i:7383:d:10.1038_nature10754
    DOI: 10.1038/nature10754
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10754
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athina Tzovara & Christoph W Korn & Dominik R Bach, 2018. "Human Pavlovian fear conditioning conforms to probabilistic learning," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-21, August.
    2. Terence C. Burnham & Jay Phelan, 2021. "Ordinaries," Journal of Bioeconomics, Springer, vol. 23(2), pages 125-149, July.
    3. Taku Hasegawa & Satomi Chiken & Kenta Kobayashi & Atsushi Nambu, 2022. "Subthalamic nucleus stabilizes movements by reducing neural spike variability in monkey basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Torben Ott & Anna Marlina Stein & Andreas Nieder, 2023. "Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Terence C. Burnham & Jay Phelan, 2020. "Ordinaries," Journal of Bioeconomics, Springer, vol. 22(2), pages 63-76, July.
    6. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Louisa E. Linders & Lefkothea Patrikiou & Mariano Soiza-Reilly & Evelien H. S. Schut & Bram F. Schaffelaar & Leonard Böger & Inge G. Wolterink-Donselaar & Mieneke C. M. Luijendijk & Roger A. H. Adan &, 2022. "Stress-driven potentiation of lateral hypothalamic synapses onto ventral tegmental area dopamine neurons causes increased consumption of palatable food," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Panna Hegedüs & Bálint Király & Dániel Schlingloff & Victoria Lyakhova & Anna Velencei & Írisz Szabó & Márton I. Mayer & Zsofia Zelenak & Gábor Nyiri & Balázs Hangya, 2024. "Parvalbumin-expressing basal forebrain neurons mediate learning from negative experience," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Huanyuan Zhou & KongFatt Wong-Lin & Da-Hui Wang, 2018. "Parallel Excitatory and Inhibitory Neural Circuit Pathways Underlie Reward-Based Phasic Neural Responses," Complexity, Hindawi, vol. 2018, pages 1-20, April.
    10. Hong Yu & Xinkuan Xiang & Zongming Chen & Xu Wang & Jiaqi Dai & Xinxin Wang & Pengcheng Huang & Zheng-dong Zhao & Wei L. Shen & Haohong Li, 2021. "Periaqueductal gray neurons encode the sequential motor program in hunting behavior of mice," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    11. Lizhu Li & Lihui Lu & Yuqi Ren & Guo Tang & Yu Zhao & Xue Cai & Zhao Shi & He Ding & Changbo Liu & Dali Cheng & Yang Xie & Huachun Wang & Xin Fu & Lan Yin & Minmin Luo & Xing Sheng, 2022. "Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Li Shen & Guang-Wei Zhang & Can Tao & Michelle B. Seo & Nicole K. Zhang & Junxiang J. Huang & Li I. Zhang & Huizhong W. Tao, 2022. "A bottom-up reward pathway mediated by somatostatin neurons in the medial septum complex underlying appetitive learning," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Bernard Bloem & Rafiq Huda & Ken-ichi Amemori & Alex S. Abate & Gayathri Krishna & Anna L. Wilson & Cody W. Carter & Mriganka Sur & Ann M. Graybiel, 2022. "Multiplexed action-outcome representation by striatal striosome-matrix compartments detected with a mouse cost-benefit foraging task," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    15. Rosalba Morese & Daniela Rabellino & Fabio Sambataro & Felice Perussia & Maria Consuelo Valentini & Bruno G Bara & Francesca M Bosco, 2016. "Group Membership Modulates the Neural Circuitry Underlying Third Party Punishment," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:482:y:2012:i:7383:d:10.1038_nature10754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.