IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28983-5.html
   My bibliography  Save this article

Multiplexed action-outcome representation by striatal striosome-matrix compartments detected with a mouse cost-benefit foraging task

Author

Listed:
  • Bernard Bloem

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Sinopia Biosciences)

  • Rafiq Huda

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Rutgers University)

  • Ken-ichi Amemori

    (Kyoto University)

  • Alex S. Abate

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Gayathri Krishna

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Anna L. Wilson

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Cody W. Carter

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Mriganka Sur

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Ann M. Graybiel

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Learning about positive and negative outcomes of actions is crucial for survival and underpinned by conserved circuits including the striatum. How associations between actions and outcomes are formed is not fully understood, particularly when the outcomes have mixed positive and negative features. We developed a novel foraging (‘bandit’) task requiring mice to maximize rewards while minimizing punishments. By 2-photon Ca++ imaging, we monitored activity of visually identified anterodorsal striatal striosomal and matrix neurons. We found that action-outcome associations for reward and punishment were encoded in parallel in partially overlapping populations. Single neurons could, for one action, encode outcomes of opposing valence. Striosome compartments consistently exhibited stronger representations of reinforcement outcomes than matrix, especially for high reward or punishment prediction errors. These findings demonstrate multiplexing of action-outcome contingencies by single identified striatal neurons and suggest that striosomal neurons are particularly important in action-outcome learning.

Suggested Citation

  • Bernard Bloem & Rafiq Huda & Ken-ichi Amemori & Alex S. Abate & Gayathri Krishna & Anna L. Wilson & Cody W. Carter & Mriganka Sur & Ann M. Graybiel, 2022. "Multiplexed action-outcome representation by striatal striosome-matrix compartments detected with a mouse cost-benefit foraging task," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28983-5
    DOI: 10.1038/s41467-022-28983-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28983-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28983-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christina M. Gremel & Rui M. Costa, 2013. "Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions," Nature Communications, Nature, vol. 4(1), pages 1-12, October.
    2. Fatuel Tecuapetla & Sara Matias & Guillaume P. Dugue & Zachary F. Mainen & Rui M. Costa, 2014. "Balanced activity in basal ganglia projection pathways is critical for contraversive movements," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    3. M. W. Howe & D. A. Dombeck, 2016. "Rapid signalling in distinct dopaminergic axons during locomotion and reward," Nature, Nature, vol. 535(7613), pages 505-510, July.
    4. Jeremiah Y. Cohen & Sebastian Haesler & Linh Vong & Bradford B. Lowell & Naoshige Uchida, 2012. "Neuron-type-specific signals for reward and punishment in the ventral tegmental area," Nature, Nature, vol. 482(7383), pages 85-88, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panna Hegedüs & Bálint Király & Dániel Schlingloff & Victoria Lyakhova & Anna Velencei & Írisz Szabó & Márton I. Mayer & Zsofia Zelenak & Gábor Nyiri & Balázs Hangya, 2024. "Parvalbumin-expressing basal forebrain neurons mediate learning from negative experience," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Vincent Paget-Blanc & Marlene E. Pfeffer & Marie Pronot & Paul Lapios & Maria-Florencia Angelo & Roman Walle & Fabrice P. Cordelières & Florian Levet & Stéphane Claverol & Sabrina Lacomme & Mélina Pet, 2022. "A synaptomic analysis reveals dopamine hub synapses in the mouse striatum," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Francesco Paolo Ulloa Severino & Oluwadamilola O. Lawal & Kristina Sakers & Shiyi Wang & Namsoo Kim & Alexander David Friedman & Sarah Anne Johnson & Chaichontat Sriworarat & Ryan H. Hughes & Scott H., 2023. "Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. Hong Yu & Xinkuan Xiang & Zongming Chen & Xu Wang & Jiaqi Dai & Xinxin Wang & Pengcheng Huang & Zheng-dong Zhao & Wei L. Shen & Haohong Li, 2021. "Periaqueductal gray neurons encode the sequential motor program in hunting behavior of mice," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. John N. J. Reynolds & Riccardo Avvisati & Paul D. Dodson & Simon D. Fisher & Manfred J. Oswald & Jeffery R. Wickens & Yan-Feng Zhang, 2022. "Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Yosuke Yawata & Yu Shikano & Jun Ogasawara & Kenichi Makino & Tetsuhiko Kashima & Keiko Ihara & Airi Yoshimoto & Shota Morikawa & Sho Yagishita & Kenji F. Tanaka & Yuji Ikegaya, 2023. "Mesolimbic dopamine release precedes actively sought aversive stimuli in mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Sravani Kondapavulur & Stefan M. Lemke & David Darevsky & Ling Guo & Preeya Khanna & Karunesh Ganguly, 2022. "Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Torben Ott & Anna Marlina Stein & Andreas Nieder, 2023. "Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Louisa E. Linders & Lefkothea Patrikiou & Mariano Soiza-Reilly & Evelien H. S. Schut & Bram F. Schaffelaar & Leonard Böger & Inge G. Wolterink-Donselaar & Mieneke C. M. Luijendijk & Roger A. H. Adan &, 2022. "Stress-driven potentiation of lateral hypothalamic synapses onto ventral tegmental area dopamine neurons causes increased consumption of palatable food," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Thomas Akam & Rui Costa & Peter Dayan, 2015. "Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-25, December.
    12. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Terence C. Burnham & Jay Phelan, 2020. "Ordinaries," Journal of Bioeconomics, Springer, vol. 22(2), pages 63-76, July.
    15. Sean C. Piantadosi & Elizabeth E. Manning & Brittany L. Chamberlain & James Hyde & Zoe LaPalombara & Nicholas M. Bannon & Jamie L. Pierson & Vijay M. K Namboodiri & Susanne E. Ahmari, 2024. "Hyperactivity of indirect pathway-projecting spiny projection neurons promotes compulsive behavior," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Athina Tzovara & Christoph W Korn & Dominik R Bach, 2018. "Human Pavlovian fear conditioning conforms to probabilistic learning," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-21, August.
    17. Ayaka Kato & Kenji Morita, 2016. "Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-41, October.
    18. Huanyuan Zhou & KongFatt Wong-Lin & Da-Hui Wang, 2018. "Parallel Excitatory and Inhibitory Neural Circuit Pathways Underlie Reward-Based Phasic Neural Responses," Complexity, Hindawi, vol. 2018, pages 1-20, April.
    19. Rosalba Morese & Daniela Rabellino & Fabio Sambataro & Felice Perussia & Maria Consuelo Valentini & Bruno G Bara & Francesca M Bosco, 2016. "Group Membership Modulates the Neural Circuitry Underlying Third Party Punishment," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    20. Huixin Lin & Jingfeng Zhou, 2024. "Hippocampal and orbitofrontal neurons contribute to complementary aspects of associative structure," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28983-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.